Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
600 views
in Technique[技术] by (71.8m points)

matlab - Python/PIL affine transformation

This is a basic transform question in PIL. I've tried at least a couple of times in the past few years to implement this correctly and it seems there is something I don't quite get about Image.transform in PIL. I want to implement a similarity transformation (or an affine transformation) where I can clearly state the limits of the image. To make sure my approach works I implemented it in Matlab.

The Matlab implementation is the following:

im = imread('test.jpg');
y = size(im,1);
x = size(im,2);
angle = 45*3.14/180.0;
xextremes = [rot_x(angle,0,0),rot_x(angle,0,y-1),rot_x(angle,x-1,0),rot_x(angle,x-1,y-1)];
yextremes = [rot_y(angle,0,0),rot_y(angle,0,y-1),rot_y(angle,x-1,0),rot_y(angle,x-1,y-1)];
m = [cos(angle) sin(angle) -min(xextremes); -sin(angle) cos(angle) -min(yextremes); 0 0 1];
tform = maketform('affine',m')
round( [max(xextremes)-min(xextremes), max(yextremes)-min(yextremes)])
im = imtransform(im,tform,'bilinear','Size',round([max(xextremes)-min(xextremes), max(yextremes)-min(yextremes)]));
imwrite(im,'output.jpg');

function y = rot_x(angle,ptx,pty),
    y = cos(angle)*ptx + sin(angle)*pty

function y = rot_y(angle,ptx,pty),
    y = -sin(angle)*ptx + cos(angle)*pty

this works as expected. This is the input:

enter image description here

and this is the output:

enter image description here

This is the Python/PIL code that implements the same transformation:

import Image
import math

def rot_x(angle,ptx,pty):
    return math.cos(angle)*ptx + math.sin(angle)*pty

def rot_y(angle,ptx,pty):
    return -math.sin(angle)*ptx + math.cos(angle)*pty

angle = math.radians(45)
im = Image.open('test.jpg')
(x,y) = im.size
xextremes = [rot_x(angle,0,0),rot_x(angle,0,y-1),rot_x(angle,x-1,0),rot_x(angle,x-1,y-1)]
yextremes = [rot_y(angle,0,0),rot_y(angle,0,y-1),rot_y(angle,x-1,0),rot_y(angle,x-1,y-1)]
mnx = min(xextremes)
mxx = max(xextremes)
mny = min(yextremes)
mxy = max(yextremes)
im = im.transform((int(round(mxx-mnx)),int(round((mxy-mny)))),Image.AFFINE,(math.cos(angle),math.sin(angle),-mnx,-math.sin(angle),math.cos(angle),-mny),resample=Image.BILINEAR)
im.save('outputpython.jpg')

and this is the output from Python:

enter image description here

I've tried this with several versions of Python and PIL on multiple OSs through the years and the results is always mostly the same.

This is the simplest possible case that illustrates the problem, I understand that if it was a rotation I wanted, I could do the rotation with the im.rotate call but I want to shear and scale too, this is just an example to illustrate a problem. I would like to get the same output for all affine transformations. I would like to be able to get this right.

EDIT:

If I change the transform line to this:

im = im.transform((int(round(mxx-mnx)),int(round((mxy-mny)))),Image.AFFINE,(math.cos(angle),math.sin(angle),0,-math.sin(angle),math.cos(angle),0),resample=Image.BILINEAR)

this is the output I get:

enter image description here

EDIT #2

I rotated by -45 degrees and changed the offset to -0.5*mnx and -0.5*mny and obtained this:

enter image description here

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

OK! So I've been working on understanding this all weekend and I think I have an answer that satisfies me. Thank you all for your comments and suggestions!

I start by looking at this:

affine transform in PIL python?

while I see that the author can make arbitrary similarity transformations it does not explain why my code was not working, nor does he explain the spatial layout of the image that we need to transform nor does he provide a linear algebraic solution to my problems.

But I do see from his code I do see that he's dividing the rotation part of the matrix (a,b,d and e) into the scale which struck me as odd. I went back to read the PIL documentation which I quote:

"im.transform(size, AFFINE, data, filter) => image

Applies an affine transform to the image, and places the result in a new image with the given size.

Data is a 6-tuple (a, b, c, d, e, f) which contain the first two rows from an affine transform matrix. For each pixel (x, y) in the output image, the new value is taken from a position (a x + b y + c, d x + e y + f) in the input image, rounded to nearest pixel.

This function can be used to scale, translate, rotate, and shear the original image."

so the parameters (a,b,c,d,e,f) are a transform matrix, but the one that maps (x,y) in the destination image to (a x + b y + c, d x + e y + f) in the source image. But not the parameters of the transform matrix you want to apply, but its inverse. That is:

  • weird
  • different than in Matlab
  • but now, fortunately, fully understood by me

I'm attaching my code:

import Image
import math
from numpy import matrix
from numpy import linalg

def rot_x(angle,ptx,pty):
    return math.cos(angle)*ptx + math.sin(angle)*pty

def rot_y(angle,ptx,pty):
    return -math.sin(angle)*ptx + math.cos(angle)*pty

angle = math.radians(45)
im = Image.open('test.jpg')
(x,y) = im.size
xextremes = [rot_x(angle,0,0),rot_x(angle,0,y-1),rot_x(angle,x-1,0),rot_x(angle,x-1,y-1)]
yextremes = [rot_y(angle,0,0),rot_y(angle,0,y-1),rot_y(angle,x-1,0),rot_y(angle,x-1,y-1)]
mnx = min(xextremes)
mxx = max(xextremes)
mny = min(yextremes)
mxy = max(yextremes)
print mnx,mny
T = matrix([[math.cos(angle),math.sin(angle),-mnx],[-math.sin(angle),math.cos(angle),-mny],[0,0,1]])
Tinv = linalg.inv(T);
print Tinv
Tinvtuple = (Tinv[0,0],Tinv[0,1], Tinv[0,2], Tinv[1,0],Tinv[1,1],Tinv[1,2])
print Tinvtuple
im = im.transform((int(round(mxx-mnx)),int(round((mxy-mny)))),Image.AFFINE,Tinvtuple,resample=Image.BILINEAR)
im.save('outputpython2.jpg')

and the output from python:

enter image description here

Let me state the answer to this question again in a final summary:

PIL requires the inverse of the affine transformation you want to apply.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...