Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.0k views
in Technique[技术] by (71.8m points)

python - Restrict scipy.optimize.minimize to integer values

I'm using scipy.optimize.minimize to optimize a real-world problem for which the answers can only be integers. My current code looks like this:

from scipy.optimize import minimize

def f(x):
    return (481.79/(5+x[0]))+(412.04/(4+x[1]))+(365.54/(3+x[2]))+(375.88/(3+x[3]))+(379.75/(3+x[4]))+(632.92/(5+x[5]))+(127.89/(1+x[6]))+(835.71/(6+x[7]))+(200.21/(1+x[8]))

def con(x):
    return sum(x)-7

cons = {'type':'eq', 'fun': con}

print scipy.optimize.minimize(f, [1,1,1,1,1,1,1,0,0], constraints=cons, bounds=([0,7],[0,7],[0,7],[0,7],[0,7],[0,7],[0,7],[0,7],[0,7]))

This yields:

x: array([  2.91950510e-16,   2.44504019e-01,   9.97850733e-01,
     1.05398840e+00,   1.07481251e+00,   2.60570253e-01,
     1.36470363e+00,   4.48527831e-02,   1.95871767e+00]

But I want it optimized with integer values (rounding all x to the nearest whole number doesn't always give the minimum).

Is there a way to use scipy.optimize.minimize with only integer values?

(I guess I could create an array with all possible permutations of x and evaluate f(x) for each combination, but that doesn't seem like a very elegant or quick solution.)

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

pulp solution

After some research, I don't think your objective function is linear. I recreated the problem in the Python pulp library but pulp doesn't like that we're dividing by a float and 'LpAffineExpression'. This answer suggests that linear programming "doesn't understand divisions" but that comment is in context of adding constraints, not the objective function. That comment pointed me to "Mixed Integer Linear Fractional Programming (MILFP)" and on Wikipedia.

Here's how you could do it in pulp if it actually worked (maybe someone can figure out why):

import pulp

data = [(481.79, 5), (412.04, 4), (365.54, 3)] #, (375.88, 3), (379.75, 3), (632.92, 5), (127.89, 1), (835.71, 6), (200.21, 1)]
x = pulp.LpVariable.dicts('x', range(len(data)), lowBound=0, upBound=7, cat=pulp.LpInteger)

numerator = dict((i,tup[0]) for i,tup in enumerate(data))
denom_int = dict((i,tup[1]) for i,tup in enumerate(data))

problem = pulp.LpProblem('Mixed Integer Linear Programming', sense=pulp.LpMinimize)

# objective function (doesn't work)
# TypeError: unsupported operand type(s) for /: 'float' and 'LpAffineExpression'
problem += sum([numerator[i] / (denom_int[i] + x[i]) for i in range(len(data))])

problem.solve()

for v in problem.variables():
  print(v.name, "=", v.varValue)

brute solution with scipy.optimize

You can use brute and ranges of slices for each x in your function. If you have 3 xs in your function, you'll also have 3 slices in your ranges tuple. The key to all of this is to add the step size of 1 to the slice(start, stop,step) so slice(#, #, 1).

from scipy.optimize import brute
import itertools

def f(x):
  return (481.79/(5+x[0]))+(412.04/(4+x[1]))+(365.54/(3+x[2]))

ranges = (slice(0, 9, 1),) * 3
result = brute(f, ranges, disp=True, finish=None)
print(result)

itertools solution

Or you can use itertools to generate all combinations:

combinations = list(itertools.product(*[[0,1,2,3,4,5,6,7,8]]*3))

values = []
for combination in combinations:
  values.append((combination, f(combination)))

best = [c for c,v in values if v == min([v for c,v in values])]
print(best)

Note: this is a scaled-down version of your original function for example purposes.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...