Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
688 views
in Technique[技术] by (71.8m points)

scala - Change value of nested column in DataFrame

I have dataframe with two level nested fields

 root
 |-- request: struct (nullable = true)
 |    |-- dummyID: string (nullable = true)
 |    |-- data: struct (nullable = true)
 |    |    |-- fooID: string (nullable = true)
 |    |    |-- barID: string (nullable = true)

I want to update the value of fooId column here. I was able to update value for the first level for example dummyID column here using this question as reference How to add a nested column to a DataFrame

Input data:

{
    "request": {
        "dummyID": "test_id",
        "data": {
            "fooID": "abc",
            "barID": "1485351"
        }
    }
}

output data:

{
    "request": {
        "dummyID": "test_id",
        "data": {
            "fooID": "def",
            "barID": "1485351"
        }
    }
}

How can I do it using Scala?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Here is a generic solution to this problem that makes it possible to update any number of nested values, at any level, based on an arbitrary function applied in a recursive traversal:

def mutate(df: DataFrame, fn: Column => Column): DataFrame = {
  // Get a projection with fields mutated by `fn` and select it
  // out of the original frame with the schema reassigned to the original
  // frame (explained later)
  df.sqlContext.createDataFrame(df.select(traverse(df.schema, fn):_*).rdd, df.schema)
}

def traverse(schema: StructType, fn: Column => Column, path: String = ""): Array[Column] = {
  schema.fields.map(f => {
    f.dataType match {
      case s: StructType => struct(traverse(s, fn, path + f.name + "."): _*)
      case _ => fn(col(path + f.name))
    }
  })
}

This is effectively equivalent to the usual "just redefine the whole struct as a projection" solutions, but it automates re-nesting fields with the original structure AND preserves nullability/metadata (which are lost when you redefine the structs manually). Annoyingly, preserving those properties isn't possible while creating the projection (afaict) so the code above redefines the schema manually.

An example application:

case class Organ(name: String, count: Int)
case class Disease(id: Int, name: String, organ: Organ)
case class Drug(id: Int, name: String, alt: Array[String])

val df = Seq(
  (1, Drug(1, "drug1", Array("x", "y")), Disease(1, "disease1", Organ("heart", 2))),
  (2, Drug(2, "drug2", Array("a")), Disease(2, "disease2", Organ("eye", 3)))
).toDF("id", "drug", "disease")

df.show(false)

+---+------------------+-------------------------+
|id |drug              |disease                  |
+---+------------------+-------------------------+
|1  |[1, drug1, [x, y]]|[1, disease1, [heart, 2]]|
|2  |[2, drug2, [a]]   |[2, disease2, [eye, 3]]  |
+---+------------------+-------------------------+

// Update the integer field ("count") at the lowest level:
val df2 = mutate(df, c => if (c.toString == "disease.organ.count") c - 1 else c)
df2.show(false)

+---+------------------+-------------------------+
|id |drug              |disease                  |
+---+------------------+-------------------------+
|1  |[1, drug1, [x, y]]|[1, disease1, [heart, 1]]|
|2  |[2, drug2, [a]]   |[2, disease2, [eye, 2]]  |
+---+------------------+-------------------------+

// This will NOT necessarily be equal unless the metadata and nullability
// of all fields is preserved (as the code above does)
assertResult(df.schema.toString)(df2.schema.toString)

A limitation of this is that it cannot add new fields, only update existing ones (though the map can be changed into a flatMap and the function to return Array[Column] for that, if you don't care about preserving nullability/metadata).

Additionally, here is a more generic version for Dataset[T]:

case class Record(id: Int, drug: Drug, disease: Disease)

def mutateDS[T](df: Dataset[T], fn: Column => Column)(implicit enc: Encoder[T]): Dataset[T] = {
  df.sqlContext.createDataFrame(df.select(traverse(df.schema, fn):_*).rdd, enc.schema).as[T]
}

// To call as typed dataset:
val fn: Column => Column = c => if (c.toString == "disease.organ.count") c - 1 else c
mutateDS(df.as[Record], fn).show(false)

// To call as untyped dataset:
implicit val encoder: ExpressionEncoder[Row] = RowEncoder(df.schema) // This is necessary regardless of sparkSession.implicits._ imports
mutateDS(df, fn).show(false)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...