Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
700 views
in Technique[技术] by (71.8m points)

matplotlib - Pandas bar plot -- specify bar color by column

Is there a simply way to specify bar colors by column name using Pandas DataFrame.plot(kind='bar') method?

I have a script that generates multiple DataFrames from several different data files in a directory. For example it does something like this:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pds

data_files = ['a', 'b', 'c', 'd']

df1 = pds.DataFrame(np.random.rand(4,3), columns=data_files[:-1])
df2 = pds.DataFrame(np.random.rand(4,3), columns=data_files[1:])

df1.plot(kind='bar', ax=plt.subplot(121))
df2.plot(kind='bar', ax=plt.subplot(122))

plt.show()

With the following output:

Output

Unfortunately, the column colors aren't consistent for each label in the different plots. Is it possible to pass in a dictionary of (filenames:colors), so that any particular column always has the same color. For example, I could imagine creating this by zipping up the filenames with the Matplotlib color_cycle:

data_files = ['a', 'b', 'c', 'd']
colors = plt.rcParams['axes.color_cycle']
print zip(data_files, colors)

[('a', u'b'), ('b', u'g'), ('c', u'r'), ('d', u'c')]

I could figure out how to do this directly with Matplotlib: I just thought there might be a simpler, built-in solution.

Edit:

Below is a partial solution that works in pure Matplotlib. However, I'm using this in an IPython notebook that will be distributed to non-programmer colleagues, and I'd like to minimize the amount of excessive plotting code.

import numpy as np
import matplotlib.pyplot as plt
import pandas as pds

data_files = ['a', 'b', 'c', 'd']
mpl_colors = plt.rcParams['axes.color_cycle']
colors = dict(zip(data_files, mpl_colors))

def bar_plotter(df, colors, sub):
    ncols = df.shape[1]
    width = 1./(ncols+2.)
    starts = df.index.values - width*ncols/2.
    plt.subplot(120+sub)
    for n, col in enumerate(df):
        plt.bar(starts + width*n, df[col].values, color=colors[col],
                width=width, label=col)
    plt.xticks(df.index.values)
    plt.grid()
    plt.legend()

df1 = pds.DataFrame(np.random.rand(4,3), columns=data_files[:-1])
df2 = pds.DataFrame(np.random.rand(4,3), columns=data_files[1:])

bar_plotter(df1, colors, 1)
bar_plotter(df2, colors, 2)

plt.show()

Desired Output

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You can pass a list as the colors. This will require a little bit of manual work to get it to line up, unlike if you could pass a dictionary, but may be a less cluttered way to accomplish your goal.

import numpy as np
import matplotlib.pyplot as plt
import pandas as pds

data_files = ['a', 'b', 'c', 'd']

df1 = pds.DataFrame(np.random.rand(4,3), columns=data_files[:-1])
df2 = pds.DataFrame(np.random.rand(4,3), columns=data_files[1:])

color_list = ['b', 'g', 'r', 'c']


df1.plot(kind='bar', ax=plt.subplot(121), color=color_list)
df2.plot(kind='bar', ax=plt.subplot(122), color=color_list[1:])

plt.show()

enter image description here

EDIT Ajean came up with a simple way to return a list of the correct colors from a dictionary:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pds

data_files = ['a', 'b', 'c', 'd']
color_list = ['b', 'g', 'r', 'c']
d2c = dict(zip(data_files, color_list))

df1 = pds.DataFrame(np.random.rand(4,3), columns=data_files[:-1])
df2 = pds.DataFrame(np.random.rand(4,3), columns=data_files[1:])

df1.plot(kind='bar', ax=plt.subplot(121), color=map(d2c.get,df1.columns))
df2.plot(kind='bar', ax=plt.subplot(122), color=map(d2c.get,df2.columns))

plt.show()

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...