Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
430 views
in Technique[技术] by (71.8m points)

aggregation framework - Query performance issue for large nested data in mongodb

I'm trying to query results from a large dataset called 'tasks' containing 187297 documents which are nested into another dataset called 'workers', that's in its turn nested into a collection called 'production_units'.

production_units -> workers -> tasks

(BTW this is a simplified version of production_units):

[{
    "_id": ObjectId("5aca27b926974863ed9f01ab"),
    "name": "Z",
    "workers": [{
        "name": "X Y",
        "worker_number": 655,
        "employed": false,
        "_id": ObjectId("5aca27bd26974863ed9f0425"),
        "tasks": [{
            "_id": ObjectId("5ac9f6c2e1a668d6d39c1fd1"),
            "inbound_order_number": 3296,
            "task_number": 90,
            "minutes_elapsed": 120,
            "date": "2004-11-30",
            "start": 1101823200,
            "pieces_actual": 160,
            "pause_from": 1101812400,
            "pause_to": 1101814200
        }]
    }]
}]

In order to accomplish this I have used the following aggregation command:

db.production_units.aggregate([{
    '$project': {
        'workers': '$workers'
    }
}, {
    '$unwind': '$workers'
}, {
    '$project': {
        'tasks': '$workers.tasks',
        'worker_number': '$workers.worker_number'
    }
}, {
    '$unwind': '$tasks'
}, {
    '$project': {
        'task_number': '$tasks.task_number',
        'pieces_actual': '$tasks.pieces_actual',
        'minutes_elapsed': '$tasks.minutes_elapsed',
        'worker_number': 1,
        'start': '$tasks.start',
        'inbound_order_number': '$tasks.inbound_order_number',
        'pause_from': '$tasks.pause_from',
        'date': '$tasks.date',
        '_id': '$tasks._id',
        'pause_to': '$tasks.pause_to'
    }
}, {
    '$match': {
        'start': {
            '$exists': true
        }
    }
}, {
    '$group': {
        'entries_count': {
            '$sum': 1
        },
        '_id': null,
        'entries': {
            '$push': '$$ROOT'
        }
    }
}, {
    '$project': {
        'entries_count': 1,
        '_id': 0,
        'entries': 1
    }
}, {
    '$unwind': '$entries'
}, {
    '$project': {
        'task_number': '$entries.task_number',
        'pieces_actual': '$entries.pieces_actual',
        'minutes_elapsed': '$entries.minutes_elapsed',
        'worker_number': '$entries.worker_number',
        'start': '$entries.start',
        'inbound_order_number': '$entries.inbound_order_number',
        'pause_from': '$entries.pause_from',
        'date': '$entries.date',
        'entries_count': 1,
        '_id': '$entries._id',
        'pause_to': '$entries.pause_to'
    }
}, {
    '$sort': {
        'start': 1
    }
}, {
    '$skip': 187290
}, {
    '$limit': 10
}], {
    allowDiskUse: true
})

And the returned documents are:

{ "entries_count" : 187297, "task_number" : 100, "pieces_actual" : 68, "minutes_elapsed" : 102, "worker_number" : 411, "start" : 1594118400, "inbound_order_number" : 8569, "pause_from" : 1594119600, "date" : "2020-07-07", "_id" : ObjectId("5ac9f6d3e1a668d6d3a06351"), "pause_to" : 1594119600 } { "entries_count" : 187297, "task_number" : 130, "pieces_actual" : 20, "minutes_elapsed" : 30, "worker_number" : 549, "start" : 1596531600, "inbound_order_number" : 7683, "pause_from" : 1596538800, "date" : "2020-08-04", "_id" : ObjectId("5ac9f6cde1a668d6d39f1b26"), "pause_to" : 1596538800 } { "entries_count" : 187297, "task_number" : 210, "pieces_actual" : 84, "minutes_elapsed" : 180, "worker_number" : 734, "start" : 1601276400, "inbound_order_number" : 8330, "pause_from" : 1601290800, "date" : "2020-09-28", "_id" : ObjectId("5ac9f6d0e1a668d6d39fd677"), "pause_to" : 1601290800 } { "entries_count" : 187297, "task_number" : 20, "pieces_actual" : 64, "minutes_elapsed" : 90, "worker_number" : 114, "start" : 1601800200, "inbound_order_number" : 7690, "pause_from" : 1601809200, "date" : "2020-10-04", "_id" : ObjectId("5ac9f6cee1a668d6d39f3032"), "pause_to" : 1601811900 } { "entries_count" : 187297, "task_number" : 140, "pieces_actual" : 70, "minutes_elapsed" : 84, "worker_number" : 49, "start" : 1603721640, "inbound_order_number" : 4592, "pause_from" : 1603710000, "date" : "2020-10-26", "_id" : ObjectId("5ac9f6c8e1a668d6d39df664"), "pause_to" : 1603712700 } { "entries_count" : 187297, "task_number" : 80, "pieces_actual" : 20, "minutes_elapsed" : 30, "worker_number" : 277, "start" : 1796628600, "inbound_order_number" : 4655, "pause_from" : 1796641200, "date" : "2026-12-07", "_id" : ObjectId("5ac9f6c8e1a668d6d39e1fc0"), "pause_to" : 1796643900 } { "entries_count" : 187297, "task_number" : 40, "pieces_actual" : 79, "minutes_elapsed" : 123, "worker_number" : 96, "start" : 3802247580, "inbound_order_number" : 4592, "pause_from" : 3802244400, "date" : "2090-06-27", "_id" : ObjectId("5ac9f6c8e1a668d6d39de218"), "pause_to" : 3802244400 }

However, the query takes seconds in order to show the results, instead of few milliseconds. This is the result returned by the profiler:

 db.system.profile.findOne().millis 3216

(UPDATE)

Even the following simplified count query gets executed in 312 ms instead of few time:

db.production_units.aggregate([{
        "$unwind": "$workers"
    }, {
        "$unwind": "$workers.tasks"
    },
    {
        "$count": "entries_count"
    }
])

This is what explain() returns for the query above:

{
    "stages" : [
        {
            "$cursor" : {
                "query" : {

                },
                "fields" : {
                    "workers" : 1,
                    "_id" : 0
                },
                "queryPlanner" : {
                    "plannerVersion" : 1,
                    "namespace" : "my_db.production_units",
                    "indexFilterSet" : false,
                    "parsedQuery" : {

                    },
                    "winningPlan" : {
                        "stage" : "COLLSCAN",
                        "direction" : "forward"
                    },
                    "rejectedPlans" : [ ]
                },
                "executionStats" : {
                    "executionSuccess" : true,
                    "nReturned" : 28,
                    "executionTimeMillis" : 13,
                    "totalKeysExamined" : 0,
                    "totalDocsExamined" : 28,
                    "executionStages" : {
                        "stage" : "COLLSCAN",
                        "nReturned" : 28,
                        "executionTimeMillisEstimate" : 0,
                        "works" : 30,
                        "advanced" : 28,
                        "needTime" : 1,
                        "needYield" : 0,
                        "saveState" : 1,
                        "restoreState" : 1,
                        "isEOF" : 1,
                        "invalidates" : 0,
                        "direction" : "forward",
                        "docsExamined" : 28
                    },
                    "allPlansExecution" : [ ]
                }
            }
        },
        {
            "$unwind" : {
                "path" : "$workers"
            }
        },
        {
            "$unwind" : {
                "path" : "$workers.tasks"
            }
        },
        {
            "$group" : {
                "_id" : {
                    "$const" : null
                },
                "entries_count" : {
                    "$sum" : {
                        "$const" : 1
                    }
                }
            }
        },
        {
            "$project" : {
                "_id" : false,
                "entries_count" : true
            }
        }
    ],
    "ok" : 1
}

I'm not an experienced DBA, so I don't know what I'm missing exactly in my aggregation pipeline, for solving the performance issue I'm facing. I have also investigated the problem and made research, but without finding any solution.

What I am missing?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

without the explain() of the query it's impossible to know for sure what is the bottleneck of the query. However, here are some advices on how to improve this query


Use a single $project stage at the end of the pipeline

the query contains 5 $project stage, when actually only one is needed. This can add a lot of overhead, especially if applied to a large number of document. Instead, use dot notation to query nested fields, for example:

{ "$unwind": "$workers.tasks" }

Call $match as early as possible

$match allows to remove some of the documents, so add it as early as possible to apply further aggregation stage on a lower number of documents

Call skip and $limit before $project

As the query returns only 10 documents, no need to apply the $project stage on the 180000 other docs

Properly index the field used for sorting

This is likely to be the bottleneck. Make sure that the field workers.tasks.start is indexed ( see MongoDB ensureIndex() for details )

Do not compute the nb of documents returned in the query

Instead of the $group/$unwind stage to count matching documents, run another query in the same time for counting only the number of matching documents


the main query now looks like:

db.collection.aggregate([{
        "$unwind": "$workers"
    }, {
        "$unwind": "$workers.tasks"
    }, {
        "$match": {
            "workers.tasks.start": {
                "$ne": null
            }
        }
    },
    {
        "$sort": {
            "workers.tasks.start": 1
        }
    }, {
        "$skip": 0
    }, {
        "$limit": 10
    },
    {
        "$project": {
            "task_number": "$workers.tasks.task_number",
            "pieces_actual": "$workers.tasks.pieces_actual",
            "minutes_elapsed": "$workers.tasks.minutes_elapsed",
            "worker_number": "$workers.worker_number",
            "start": "$workers.tasks.start",
            "inbound_order_number": "$workers.tasks.inbound_order_number",
            "pause_from": "$workers.tasks.pause_from",
            "date": "$workers.tasks.date",
            "_id": "$workers.tasks._id",
            "pause_to": "$workers.tasks.pause_to"
        }
    }
])

you can try it here: mongoplayground.net/p/yua7qspo2Jj

the count query would be

db.collection.aggregate([{
        "$unwind": "$workers"
    }, {
        "$unwind": "$workers.tasks"
    }, {
        "$match": {
            "workers.tasks.start": {
                "$ne": null
            }
        }
    },
    {
        "$count": "entries_count"
    }
])

the count query would look like


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...