Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
693 views
in Technique[技术] by (71.8m points)

algorithm - Breadth First Search time complexity analysis

The time complexity to go over each adjacent edge of a vertex is, say, O(N), where N is number of adjacent edges. So, for V numbers of vertices the time complexity becomes O(V*N) = O(E), where E is the total number of edges in the graph. Since removing and adding a vertex from/to a queue is O(1), why is it added to the overall time complexity of BFS as O(V+E)?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I hope this is helpful to anybody having trouble understanding computational time complexity for Breadth First Search a.k.a BFS.

Queue graphTraversal.add(firstVertex);

// This while loop will run V times, where V is total number of vertices in graph.
while(graphTraversal.isEmpty == false)

    currentVertex = graphTraversal.getVertex();

    // This while loop will run Eaj times, where Eaj is number of adjacent edges to current vertex.
    while(currentVertex.hasAdjacentVertices)
        graphTraversal.add(adjacentVertex);

    graphTraversal.remove(currentVertex);

Time complexity is as follows:

V * (O(1) + O(Eaj) + O(1))
V + V * Eaj + V
2V + E(total number of edges in graph)
V + E

I have tried to simplify the code and complexity computation but still if you have any questions let me know.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...