Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
398 views
in Technique[技术] by (71.8m points)

c - Why is writing to memory much slower than reading it?

Here's a simple memset bandwidth benchmark:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

int main()
{
    unsigned long n, r, i;
    unsigned char *p;
    clock_t c0, c1;
    double elapsed;

    n = 1000 * 1000 * 1000; /* GB */
    r = 100; /* repeat */

    p = calloc(n, 1);

    c0 = clock();

    for(i = 0; i < r; ++i) {
        memset(p, (int)i, n);
        printf("%4d/%4ld
", p[0], r); /* "use" the result */
        fflush(stdout);
    }

    c1 = clock();

    elapsed = (c1 - c0) / (double)CLOCKS_PER_SEC;

    printf("Bandwidth = %6.3f GB/s (Giga = 10^9)
", (double)n * r / elapsed / 1e9);

    free(p);
}

On my system (details below) with a single DDR3-1600 memory module, it outputs:

Bandwidth = 4.751 GB/s (Giga = 10^9)

This is 37% of the theoretical RAM speed: 1.6 GHz * 8 bytes = 12.8 GB/s

On the other hand, here's a similar "read" test:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

unsigned long do_xor(const unsigned long* p, unsigned long n)
{
    unsigned long i, x = 0;

    for(i = 0; i < n; ++i)
        x ^= p[i];
    return x;
}

int main()
{
    unsigned long n, r, i;
    unsigned long *p;
    clock_t c0, c1;
    double elapsed;

    n = 1000 * 1000 * 1000; /* GB */
    r = 100; /* repeat */

    p = calloc(n/sizeof(unsigned long), sizeof(unsigned long));

    c0 = clock();

    for(i = 0; i < r; ++i) {
        p[0] = do_xor(p, n / sizeof(unsigned long)); /* "use" the result */
        printf("%4ld/%4ld
", i, r);
        fflush(stdout);
    }

    c1 = clock();

    elapsed = (c1 - c0) / (double)CLOCKS_PER_SEC;

    printf("Bandwidth = %6.3f GB/s (Giga = 10^9)
", (double)n * r / elapsed / 1e9);

    free(p);
}

It outputs:

Bandwidth = 11.516 GB/s (Giga = 10^9)

I can get close to the theoretical limit for read performance, such as XORing a large array, but writing appears to be much slower. Why?

OS Ubuntu 14.04 AMD64 (I compile with gcc -O3. Using -O3 -march=native makes the read performance slightly worse, but does not affect memset)

CPU Xeon E5-2630 v2

RAM A single "16GB PC3-12800 Parity REG CL11 240-Pin DIMM" (What it says on the box) I think that having a single DIMM makes performance more predictable. I'm assuming that with 4 DIMMs, memset will be up to 4 times faster.

Motherboard Supermicro X9DRG-QF (Supports 4-channel memory)

Additional system: A laptop with 2x 4GB of DDR3-1067 RAM: read and write are both about 5.5 GB/s, but note that it uses 2 DIMMs.

P.S. replacing memset with this version results in exactly the same performance

void *my_memset(void *s, int c, size_t n)
{
    unsigned long i = 0;
    for(i = 0; i < n; ++i)
        ((char*)s)[i] = (char)c;
    return s;
}
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

With your programs, I get

(write) Bandwidth =  6.076 GB/s
(read)  Bandwidth = 10.916 GB/s

on a desktop (Core i7, x86-64, GCC 4.9, GNU libc 2.19) machine with six 2GB DIMMs. (I don't have any more detail than that to hand, sorry.)

However, this program reports write bandwidth of 12.209 GB/s:

#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <emmintrin.h>

static void
nt_memset(char *buf, unsigned char val, size_t n)
{
    /* this will only work with aligned address and size */
    assert((uintptr_t)buf % sizeof(__m128i) == 0);
    assert(n % sizeof(__m128i) == 0);

    __m128i xval = _mm_set_epi8(val, val, val, val,
                                val, val, val, val,
                                val, val, val, val,
                                val, val, val, val);

    for (__m128i *p = (__m128i*)buf; p < (__m128i*)(buf + n); p++)
        _mm_stream_si128(p, xval);
    _mm_sfence();
}

/* same main() as your write test, except calling nt_memset instead of memset */

The magic is all in _mm_stream_si128, aka the machine instruction movntdq, which writes a 16-byte quantity to system RAM, bypassing the cache (the official jargon for this is "non-temporal store"). I think this pretty conclusively demonstrates that the performance difference is all about the cache behavior.

N.B. glibc 2.19 does have an elaborately hand-optimized memset that makes use of vector instructions. However, it does not use non-temporal stores. That's probably the Right Thing for memset; in general, you clear memory shortly before using it, so you want it to be hot in the cache. (I suppose an even cleverer memset might switch to non-temporal stores for really huge block clear, on the theory that you could not possibly want all of that in the cache, because the cache simply isn't that big.)

Dump of assembler code for function memset:
=> 0x00007ffff7ab9420 <+0>:     movd   %esi,%xmm8
   0x00007ffff7ab9425 <+5>:     mov    %rdi,%rax
   0x00007ffff7ab9428 <+8>:     punpcklbw %xmm8,%xmm8
   0x00007ffff7ab942d <+13>:    punpcklwd %xmm8,%xmm8
   0x00007ffff7ab9432 <+18>:    pshufd $0x0,%xmm8,%xmm8
   0x00007ffff7ab9438 <+24>:    cmp    $0x40,%rdx
   0x00007ffff7ab943c <+28>:    ja     0x7ffff7ab9470 <memset+80>
   0x00007ffff7ab943e <+30>:    cmp    $0x10,%rdx
   0x00007ffff7ab9442 <+34>:    jbe    0x7ffff7ab94e2 <memset+194>
   0x00007ffff7ab9448 <+40>:    cmp    $0x20,%rdx
   0x00007ffff7ab944c <+44>:    movdqu %xmm8,(%rdi)
   0x00007ffff7ab9451 <+49>:    movdqu %xmm8,-0x10(%rdi,%rdx,1)
   0x00007ffff7ab9458 <+56>:    ja     0x7ffff7ab9460 <memset+64>
   0x00007ffff7ab945a <+58>:    repz retq 
   0x00007ffff7ab945c <+60>:    nopl   0x0(%rax)
   0x00007ffff7ab9460 <+64>:    movdqu %xmm8,0x10(%rdi)
   0x00007ffff7ab9466 <+70>:    movdqu %xmm8,-0x20(%rdi,%rdx,1)
   0x00007ffff7ab946d <+77>:    retq   
   0x00007ffff7ab946e <+78>:    xchg   %ax,%ax
   0x00007ffff7ab9470 <+80>:    lea    0x40(%rdi),%rcx
   0x00007ffff7ab9474 <+84>:    movdqu %xmm8,(%rdi)
   0x00007ffff7ab9479 <+89>:    and    $0xffffffffffffffc0,%rcx
   0x00007ffff7ab947d <+93>:    movdqu %xmm8,-0x10(%rdi,%rdx,1)
   0x00007ffff7ab9484 <+100>:   movdqu %xmm8,0x10(%rdi)
   0x00007ffff7ab948a <+106>:   movdqu %xmm8,-0x20(%rdi,%rdx,1)
   0x00007ffff7ab9491 <+113>:   movdqu %xmm8,0x20(%rdi)
   0x00007ffff7ab9497 <+119>:   movdqu %xmm8,-0x30(%rdi,%rdx,1)
   0x00007ffff7ab949e <+126>:   movdqu %xmm8,0x30(%rdi)
   0x00007ffff7ab94a4 <+132>:   movdqu %xmm8,-0x40(%rdi,%rdx,1)
   0x00007ffff7ab94ab <+139>:   add    %rdi,%rdx
   0x00007ffff7ab94ae <+142>:   and    $0xffffffffffffffc0,%rdx
   0x00007ffff7ab94b2 <+146>:   cmp    %rdx,%rcx
   0x00007ffff7ab94b5 <+149>:   je     0x7ffff7ab945a <memset+58>
   0x00007ffff7ab94b7 <+151>:   nopw   0x0(%rax,%rax,1)
   0x00007ffff7ab94c0 <+160>:   movdqa %xmm8,(%rcx)
   0x00007ffff7ab94c5 <+165>:   movdqa %xmm8,0x10(%rcx)
   0x00007ffff7ab94cb <+171>:   movdqa %xmm8,0x20(%rcx)
   0x00007ffff7ab94d1 <+177>:   movdqa %xmm8,0x30(%rcx)
   0x00007ffff7ab94d7 <+183>:   add    $0x40,%rcx
   0x00007ffff7ab94db <+187>:   cmp    %rcx,%rdx
   0x00007ffff7ab94de <+190>:   jne    0x7ffff7ab94c0 <memset+160>
   0x00007ffff7ab94e0 <+192>:   repz retq 
   0x00007ffff7ab94e2 <+194>:   movq   %xmm8,%rcx
   0x00007ffff7ab94e7 <+199>:   test   $0x18,%dl
   0x00007ffff7ab94ea <+202>:   jne    0x7ffff7ab950e <memset+238>
   0x00007ffff7ab94ec <+204>:   test   $0x4,%dl
   0x00007ffff7ab94ef <+207>:   jne    0x7ffff7ab9507 <memset+231>
   0x00007ffff7ab94f1 <+209>:   test   $0x1,%dl
   0x00007ffff7ab94f4 <+212>:   je     0x7ffff7ab94f8 <memset+216>
   0x00007ffff7ab94f6 <+214>:   mov    %cl,(%rdi)
   0x00007ffff7ab94f8 <+216>:   test   $0x2,%dl
   0x00007ffff7ab94fb <+219>:   je     0x7ffff7ab945a <memset+58>
   0x00007ffff7ab9501 <+225>:   mov    %cx,-0x2(%rax,%rdx,1)
   0x00007ffff7ab9506 <+230>:   retq   
   0x00007ffff7ab9507 <+231>:   mov    %ecx,(%rdi)
   0x00007ffff7ab9509 <+233>:   mov    %ecx,-0x4(%rdi,%rdx,1)
   0x00007ffff7ab950d <+237>:   retq   
   0x00007ffff7ab950e <+238>:   mov    %rcx,(%rdi)
   0x00007ffff7ab9511 <+241>:   mov    %rcx,-0x8(%rdi,%rdx,1)
   0x00007ffff7ab9516 <+246>:   retq   

(This is in libc.so.6, not the program itself -- the other person who tried to dump the assembly for memset seems only to have found its PLT entry. The easiest way to get the assembly dump for the real memset on a Unixy system is

$ gdb ./a.out
(gdb) set env LD_BIND_NOW t
(gdb) b main
Breakpoint 1 at [address]
(gdb) r
Breakpoint 1, [address] in main ()
(gdb) disas memset
...

.)


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...