Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
263 views
in Technique[技术] by (71.8m points)

complexity theory - algorithm to find longest non-overlapping sequences

I am trying to find the best way to solve the following problem. By best way I mean less complex.

As an input a list of tuples (start,length) such:

[(0,5),(0,1),(1,9),(5,5),(5,7),(10,1)]

Each element represets a sequence by its start and length, for example (5,7) is equivalent to the sequence (5,6,7,8,9,10,11) - a list of 7 elements starting with 5. One can assume that the tuples are sorted by the start element.

The output should return a non-overlapping combination of tuples that represent the longest continuous sequences(s). This means that, a solution is a subset of ranges with no overlaps and no gaps and is the longest possible - there could be more than one though.

For example for the given input the solution is:

[(0,5),(5,7)] equivalent to (0,1,2,3,4,5,6,7,8,9,10,11)

is it backtracking the best approach to solve this problem ?

I'm interested in any different approaches that people could suggest.

Also if anyone knows a formal reference of this problem or another one that is similar I'd like to get references.

BTW - this is not homework.

Edit

Just to avoid some mistakes this is another example of expected behaviour

for an input like [(0,1),(1,7),(3,20),(8,5)] the right answer is [(3,20)] equivalent to (3,4,5,..,22) with length 20. Some of the answers received would give [(0,1),(1,7),(8,5)] equivalent to (0,1,2,...,11,12) as right answer. But this last answer is not correct because is shorter than [(3,20)].

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Iterate over the list of tuples using the given ordering (by start element), while using a hashmap to keep track of the length of the longest continuous sequence ending on a certain index.

pseudo-code, skipping details like items not found in a hashmap (assume 0 returned if not found):

int bestEnd = 0;
hashmap<int,int> seq // seq[key] = length of the longest sequence ending on key-1, or 0 if not found
foreach (tuple in orderedTuples) {
    int seqLength = seq[tuple.start] + tuple.length
    int tupleEnd = tuple.start+tuple.length;
    seq[tupleEnd] = max(seq[tupleEnd], seqLength)
    if (seqLength > seq[bestEnd]) bestEnd = tupleEnd
}
return new tuple(bestEnd-seq[bestEnd], seq[bestEnd])

This is an O(N) algorithm.

If you need the actual tuples making up this sequence, you'd need to keep a linked list of tuples hashed by end index as well, updating this whenever the max length is updated for this end-point.

UPDATE: My knowledge of python is rather limited, but based on the python code you pasted, I created this code that returns the actual sequence instead of just the length:

def get_longest(arr):
    bestEnd = 0;
    seqLengths = dict() #seqLengths[key] = length of the longest sequence ending on key-1, or 0 if not found
    seqTuples = dict() #seqTuples[key] = the last tuple used in this longest sequence
    for t in arr:
        seqLength = seqLengths.get(t[0],0) + t[1]
        tupleEnd = t[0] + t[1]
        if (seqLength > seqLengths.get(tupleEnd,0)):
            seqLengths[tupleEnd] = seqLength
            seqTuples[tupleEnd] = t
            if seqLength > seqLengths.get(bestEnd,0):
                bestEnd = tupleEnd
    longestSeq = []
    while (bestEnd in seqTuples):
        longestSeq.append(seqTuples[bestEnd])
        bestEnd -= seqTuples[bestEnd][1]
    longestSeq.reverse()
    return longestSeq


if __name__ == "__main__":
    a = [(0,3),(1,4),(1,1),(1,8),(5,2),(5,5),(5,6),(10,2)]
    print(get_longest(a))

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

1.4m articles

1.4m replys

5 comments

57.0k users

...