Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
565 views
in Technique[技术] by (71.8m points)

r - Reshape wide format, to multi-column long format

I want to reshape a wide format dataset that has multiple tests which are measured at 3 time points:

   ID   Test Year   Fall Spring Winter
    1   1   2008    15      16      19
    1   1   2009    12      13      27
    1   2   2008    22      22      24
    1   2   2009    10      14      20
    2   1   2008    12      13      25
    2   1   2009    16      14      21
    2   2   2008    13      11      29
    2   2   2009    23      20      26
    3   1   2008    11      12      22
    3   1   2009    13      11      27
    3   2   2008    17      12      23
    3   2   2009    14      9       31

into a data set that separates the tests by column but converts the measurement time into long format, for each of the new columns like this:

    ID  Year    Time        Test1 Test2
    1   2008    Fall        15      22
    1   2008    Spring      16      22
    1   2008    Winter      19      24
    1   2009    Fall        12      10
    1   2009    Spring      13      14
    1   2009    Winter      27      20
    2   2008    Fall        12      13
    2   2008    Spring      13      11
    2   2008    Winter      25      29
    2   2009    Fall        16      23
    2   2009    Spring      14      20
    2   2009    Winter      21      26
    3   2008    Fall        11      17
    3   2008    Spring      12      12
    3   2008    Winter      22      23
    3   2009    Fall        13      14
    3   2009    Spring      11      9
    3   2009    Winter      27      31

I have unsuccessfully tried to use reshape and melt. Existing posts address transforming to single column outcome.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Using reshape2:

# Thanks to Ista for helping with direct naming using "variable.name"
df.m <- melt(df, id.var = c("ID", "Test", "Year"), variable.name = "Time")
df.m <- transform(df.m, Test = paste0("Test", Test))
dcast(df.m, ID + Year + Time ~ Test, value.var = "value")

Update: Using data.table melt/cast from versions >= 1.9.0:

data.table from versions 1.9.0 imports reshape2 package and implements fast melt and dcast methods in C for data.tables. A comparison of speed on bigger data is shown below.

For more info regarding NEWS, go here.

require(data.table) ## ver. >=1.9.0
require(reshape2)

dt <- as.data.table(df, key=c("ID", "Test", "Year"))
dt.m <- melt(dt, id.var = c("ID", "Test", "Year"), variable.name = "Time")
dt.m[, Test := paste0("Test", Test)]
dcast.data.table(dt.m, ID + Year + Time ~ Test, value.var = "value")

At the moment, you'll have to write dcast.data.table explicitly as it's not a S3 generic in reshape2 yet.


Benchmarking on bigger data:

# generate data:
set.seed(45L)
DT <- data.table(ID = sample(1e2, 1e7, TRUE), 
        Test = sample(1e3, 1e7, TRUE), 
        Year = sample(2008:2014, 1e7,TRUE), 
        Fall = sample(50, 1e7, TRUE), 
        Spring = sample(50, 1e7,TRUE), 
        Winter = sample(50, 1e7, TRUE))
DF <- as.data.frame(DT)

reshape2 timings:

reshape2_melt <- function(df) {
    df.m <- melt(df, id.var = c("ID", "Test", "Year"), variable.name = "Time")
}
# min. of three consecutive runs
system.time(df.m <- reshape2_melt(DF))
#   user  system elapsed 
# 43.319   4.909  48.932 

df.m <- transform(df.m, Test = paste0("Test", Test))

reshape2_cast <- function(df) {
    dcast(df.m, ID + Year + Time ~ Test, value.var = "value")
}
# min. of three consecutive runs
system.time(reshape2_cast(df.m))
#   user  system elapsed 
# 57.728   9.712  69.573 

data.table timings:

DT_melt <- function(dt) {
    dt.m <- melt(dt, id.var = c("ID", "Test", "Year"), variable.name = "Time")
}
# min. of three consecutive runs
system.time(dt.m <- reshape2_melt(DT))
#   user  system elapsed 
#  0.276   0.001   0.279 

dt.m[, Test := paste0("Test", Test)]

DT_cast <- function(dt) {
    dcast.data.table(dt.m, ID + Year + Time ~ Test, value.var = "value")
}
# min. of three consecutive runs
system.time(DT_cast(dt.m))
#   user  system elapsed 
# 12.732   0.825  14.006 

melt.data.table is ~175x faster than reshape2:::melt and dcast.data.table is ~5x than reshape2:::dcast.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...