本文主要内容包含: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 。
第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的測试数据集。Iris数据集能够在http://en.wikipedia.org/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现须要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。 一种解决方法是用已有的数据训练一个神经网络用作分类器。 假设你仅仅想用C#或Matlab高速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。 第一节、神经网络基本原理 1. 人工神经元( Artificial Neuron )模型 人工神经元是神经网络的基本元素,其原理能够用下图表示:
图1. 人工神经元模型
图中x1~xn是从其它神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:
图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子能够简化为:
若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ]
则神经元的输出能够表示为向量相乘的形式:
若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。 图1中的这样的“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 经常使用激活函数 激活函数的选择是构建神经网络过程中的重要环节,以下简要介绍经常使用的激活函数。 (1) 线性函数 ( Liner Function )
(2) 斜面函数 ( Ramp Function )
(3) 阈值函数 ( Threshold Function )
以上3个激活函数都属于线性函数,以下介绍两个经常使用的非线性激活函数。 (4) S形函数 ( Sigmoid Function )
该函数的导函数:
(5) 双极S形函数
该函数的导函数:
S形函数与双极S形函数的图像例如以下: 图3. S形函数与双极S形函数图像 双极S形函数与S形函数主要差别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。 因为S形函数与双极S形函数都是可导的(导函数是连续函数),因此适合用在BP神经网络中。(BP算法要求激活函数可导) 3. 神经网络模型 神经网络是由大量的神经元互联而构成的网络。依据网络中神经元的互联方式,常见网络结构主要能够分为以下3类: (1) 前馈神经网络 ( Feedforward Neural Networks ) 前馈网络也称前向网络。这样的网络仅仅在训练过程会有反馈信号,而在分类过程中数据仅仅能向前传送,直到到达输出层,层间没有向后的反馈信号,因此被称为前馈网络。感知机( perceptron)与BP神经网络就属于前馈网络。 图4 中是一个3层的前馈神经网络,当中第一层是输入单元,第二层称为隐含层,第三层称为输出层(输入单元不是神经元,因此图中有2层神经元)。
图4. 前馈神经网络
对于一个3层的前馈神经网络N,若用X表示网络的输入向量,W1~W3表示网络各层的连接权向量,F1~F3表示神经网络3层的激活函数。 那么神经网络的第一层神经元的输出为: O1 = F1( XW1 ) 第二层的输出为: O2 = F2 ( F1( XW1 ) W2 ) 输出层的输出为: O3 = F3( F2 ( F1( XW1 ) W2 ) W3 ) 若激活函数F1~F3都选用线性函数,那么神经网络的输出O3将是输入X的线性函数。因此,若要做高次函数的逼近就应该选用适当的非线性函数作为激活函数。 (2) 反馈神经网络 ( Feedback Neural Networks ) 反馈型神经网络是一种从输出到输入具有反馈连接的神经网络,其结构比前馈网络要复杂得多。典型的反馈型神经网络有:Elman网络和Hopfield网络。
图5. 反馈神经网络
(3) 自组织网络 ( SOM ,Self-Organizing Neural Networks ) 自组织神经网络是一种无导师学习网络。它通过自己主动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络參数与结构。
图6. 自组织网络
4. 神经网络工作方式 神经网络运作过程分为学习和工作两种状态。 (1)神经网络的学习状态 网络的学习主要是指使用学习算法来调整神经元间的联接权,使得网络输出更符合实际。学习算法分为有导师学习( Supervised Learning )与无导师学习( Unsupervised Learning )两类。 有导师学习算法将一组训练集 ( training set )送入网络,依据网络的实际输出与期望输出间的区别来调整连接权。有导师学习算法的主要步骤包含: 1) 从样本集合中取一个样本(Ai,Bi); 2) 计算网络的实际输出O; 3) 求D=Bi-O; 4) 依据D调整权矩阵W; 5) 对每一个样本反复上述过程,直到对整个样本集来说,误差不超过规定范围。 BP算法就是一种出色的有导师学习算法。 无导师学习抽取样本集合中蕴含的统计特性,并以神经元之间的联接权的形式存于网络中。 Hebb学习律是一种经典的无导师学习算法。 (2) 神经网络的工作状态 神经元间的连接权不变,神经网络作为分类器、预測器等使用。 以下简要介绍一下Hebb学习率与Delta学习规则 。 (3) 无导师学习算法:Hebb学习率 Hebb算法核心思想是,当两个神经元同一时候处于激发状态时两者间的连接权会被加强,否则被减弱。 为了理解Hebb算法,有必要简介一下条件反射实验。巴甫洛夫的条件反射实验:每次给狗喂食前都先响铃,时间一长,狗就会将铃声和食物联系起来。以后假设响铃可是不给食物,狗也会流口水。
图7. 巴甫洛夫的条件反射实验
受该实验的启示,Hebb的理论觉得在同一时间被激发的神经元间的联系会被强化。比方,铃声响时一个神经元被激发,在同一时间食物的出现会激发附近的还有一个神经元,那么这两个神经元间的联系就会强化,从而记住这两个事物之间存在着联系。相反,假设两个神经元总是不能同步激发,那么它们间的联系将会越来越弱。 Hebb学习律可表示为:
当中wij表示神经元j到神经元i的连接权,yi与yj为两个神经元的输出,a是表示学习速度的常数。若yi与yj同一时候被激活,即yi与yj同一时候为正,那么Wij将增大。若yi被激活,而yj处于抑制状态,即yi为正yj为负,那么Wij将变小。 (4) 有导师学习算法:Delta学习规则 Delta学习规则是一种简单的有导师学习算法,该算法依据神经元的实际输出与期望输出区别来调整连接权,其数学表演示样例如以下:
当中Wij表示神经元j到神经元i的连接权,di是神经元i的期望输出,yi是神经元i的实际输出,xj表示神经元j状态,若神经元j处于激活态则xj为1,若处于抑制状态则xj为0或-1(依据激活函数而定)。a是表示学习速度的常数。如果xi为1,若di比yi大,那么Wij将增大,若di比yi小,那么Wij将变小。 Delta规则简单讲来就是:若神经元实际输出比期望输出大,则减小全部输入为正的连接的权重,增大全部输入为负的连接的权重。反之,若神经元实际输出比期望输出小,则增大全部输入为正的连接的权重,减小全部输入为负的连接的权重。这个增大或减小的幅度就依据上面的式子来计算。 (5)有导师学习算法:BP算法 採用BP学习算法的前馈型神经网络通常被称为BP网络。
图8. 三层BP神经网络结构
BP网络具有非常强的非线性映射能力,一个3层BP神经网络可以实现对随意非线性函数进行逼近(依据Kolrnogorov定理)。一个典型的3层BP神经网络模型如图7所看到的。 BP网络的学习算法占篇幅较大,我打算在下一篇文章中介绍。 第二节、神经网络实现
1. 数据预处理 在训练神经网络前一般须要对数据进行预处理,一种重要的预处理手段是归一化处理。以下简要介绍归一化处理的原理与方法。 (1) 什么是归一化? 数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比方(0.1,0.9) 。 (2) 为什么要归一化处理? <1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。 <2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。 <3>因为神经网络输出层的激活函数的值域是有限制的,因此须要将网络训练的目标数据映射到激活函数的值域。比如神经网络的输出层若採用S形激活函数,因为S形函数的值域限制在(0,1),也就是说神经网络的输出仅仅能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。 <4>S形激活函数在(0,1)区间以外区域非常平缓,区分度太小。比如S形函数f(X)在參数a=1时,f(100)与f(5)仅仅相差0.0067。 (3) 归一化算法 一种简单而高速的归一化算法是线性转换算法。线性转换算法常见有两种形式: <1> y = ( x - min )/( max - min ) 当中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。上式将数据归一化到 [ 0 , 1 ]区间,当激活函数採用S形函数时(值域为(0,1))时这条式子适用。 <2> y = 2 * ( x - min ) / ( max - min ) - 1 这条公式将数据归一化到 [ -1 , 1 ] 区间。当激活函数採用双极S形函数(值域为(-1,1))时这条式子适用。 (4) Matlab数据归一化处理函数 Matlab中归一化处理数据能够採用premnmx , postmnmx , tramnmx 这3个函数。 <1> premnmx 语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t) 參数: pn: p矩阵按行归一化后的矩阵 minp,maxp:p矩阵每一行的最小值,最大值 tn:t矩阵按行归一化后的矩阵 mint,maxt:t矩阵每一行的最小值,最大值 作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。 <2> tramnmx 语法:[pn] = tramnmx(p,minp,maxp) 參数: minp,maxp:premnmx函数计算的矩阵的最小,最大值 pn:归一化后的矩阵 作用:主要用于归一化处理待分类的输入数据。 <3> postmnmx 语法: [p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt) 參数: minp,maxp:premnmx函数计算的p矩阵每行的最小值,最大值 mint,maxt:premnmx函数计算的t矩阵每行的最小值,最大值 作用:将矩阵pn,tn映射回归一化处理前的范围。postmnmx函数主要用于将神经网络的输出结果映射回归一化前的数据范围。 2. 使用Matlab实现神经网络 使用Matlab建立前馈神经网络主要会使用到以下3个函数: newff :前馈网络创建函数 train:训练一个神经网络 sim :使用网络进行仿真 以下简要介绍这3个函数的使用方法。 (1) newff函数 <1>newff函数语法 newff函数參数列表有非常多的可选參数,详细能够參考Matlab的帮助文档,这里介绍newff函数的一种简单的形式。 语法:net = newff ( A, B, {C} ,‘trainFun’) 參数: A:一个n×2的矩阵,第i行元素为输入信号xi的最小值和最大值; B:一个k维行向量,其元素为网络中各层节点数; C:一个k维字符串行向量,每一分量为相应层神经元的激活函数; trainFun :为学习规则採用的训练算法。 <2>经常使用的激活函数 经常使用的激活函数有: a) 线性函数 (Linear transfer function) f(x) = x 该函数的字符串为’purelin’。
b) 对数S形转移函数( Logarithmic sigmoid transfer function )
该函数的字符串为’logsig’。 c) 双曲正切S形函数 (Hyperbolic tangent sigmoid transfer function )
也就是上面所提到的双极S形函数。
该函数的字符串为’ tansig’。 Matlab的安装文件夹下的toolbox\nnet\nnet\nntransfer子文件夹中有全部激活函数的定义说明。 <3>常见的训练函数 常见的训练函数有: traingd :梯度下降BP训练函数(Gradient descent backpropagation) traingdx :梯度下降自适应学习率训练函数 <4>网络配置參数 一些重要的网络配置參数例如以下: net.trainparam.goal :神经网络训练的目标误差 net.trainparam.show : 显示中间结果的周期 net.trainparam.epochs :最大迭代次数 net.trainParam.lr : 学习率 (2) train函数 网络训练学习函数。 语法:[ net, tr, Y1, E ] = train( net, X, Y ) 參数: X:网络实际输入 Y:网络应有输出 tr:训练跟踪信息 Y1:网络实际输出 E:误差矩阵 (3) sim函数 语法:Y=sim(net,X) 參数: net:网络 X:输入给网络的K×N矩阵,当中K为网络输入个数,N为数据样本数 Y:输出矩阵Q×N,当中Q为网络输出个数 (4) Matlab BP网络实例 我将Iris数据集分为2组,每组各75个样本,每组中每种花各有25个样本。当中一组作为以上程序的训练样本,另外一组作为检验样本。为了方便训练,将3类花分别编号为1,2,3 。 使用这些数据训练一个4输入(分别相应4个特征),3输出(分别相应该样本属于某一品种的可能性大小)的前向网络。 Matlab程序例如以下:
以上程序的识别率稳定在95%左右,训练100次左右达到收敛,训练曲线例如以下图所看到的:
图9. 训练性能表现
(5)參数设置对神经网络性能的影响 我在实验中通过调整隐含层节点数,选择不通过的激活函数,设定不同的学习率,
<1>隐含层节点个数 隐含层节点的个数对于识别率的影响并不大,可是节点个数过多会添加运算量,使得训练较慢。
<2>激活函数的选择 激活函数不管对于识别率或收敛速度都有显著的影响。在逼近高次曲线时,S形函数精度比线性函数要高得多,但计算量也要大得多。
<3>学习率的选择 学习率影响着网络收敛的速度,以及网络是否能收敛。学习率设置偏小能够保证网络收敛,可是收敛较慢。相反,学习率设置偏大则有可能使网络训练不收敛,影响识别效果。
3. 使用AForge.NET实现神经网络 (1) AForge.NET简单介绍 AForge.NET是一个C#实现的面向人工智能、计算机视觉等领域的开源架构。AForge.NET源码下的Neuro文件夹包括一个神经网络的类库。 AForge.NET主页:http://www.aforgenet.com/ AForge.NET代码下载:http://code.google.com/p/aforge/ Aforge.Neuroproject的类图例如以下:
图10. AForge.Neuro类库类图
以下介绍图9中的几个主要的类: Neuron — 神经元的抽象基类 Layer — 层的抽象基类,由多个神经元组成 Network —神经网络的抽象基类,由多个层(Layer)组成 IActivationFunction - 激活函数(activation function)的接口 IUnsupervisedLearning - 无导师学习(unsupervised learning)算法的接口ISupervisedLearning - 有导师学习(supervised learning)算法的接口
(2)使用Aforge建立BP神经网络 使用AForge建立BP神经网络会用到以下的几个类: <1> SigmoidFunction : S形神经网络 构造函数:public SigmoidFunction( double alpha ) 參数alpha决定S形函数的陡峭程度。 <2> ActivationNetwork :神经网络类 构造函数: public ActivationNetwork( IActivationFunction function, int inputsCount, params int[] neuronsCount ) : base( inputsCount, neuronsCount.Length ) public virtual double[] Compute( double[] input )
參数意义: inputsCount:输入个数 neuronsCount :表示各层神经元个数 <3> BackPropagationLearning:BP学习算法 构造函数: public BackPropagationLearning( ActivationNetwork network ) 參数意义: network :要训练的神经网络对象 BackPropagationLearning类须要用户设置的属性有以下2个: learningRate :学习率 momentum :冲量因子 以下给出一个用AForge构建BP网络的代码。
改程序对Iris 数据进行分类,识别率可达97%左右 。 文章来自:http://www.cnblogs.com/heaad/ 转载:http://www.cnblogs.com/heaad/archive/2011/03/07/1976443.html |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论