开源软件名称(OpenSource Name): kubeflow/pytorch-operator开源软件地址(OpenSource Url): https://github.com/kubeflow/pytorch-operator开源编程语言(OpenSource Language):
Jsonnet
95.2%
开源软件介绍(OpenSource Introduction): Kubernetes Custom Resource and Operator for PyTorch jobs
⚠️ kubeflow/pytorch-operator is not maintained
This operator has been merged into Kubeflow Training Operator . This repository is not maintained and has been archived.
Overview
This repository contains the specification and implementation of PyTorchJob
custom resource definition. Using this custom resource, users can create and manage PyTorch jobs like other built-in resources in Kubernetes. See CRD definition
Prerequisites
Installing PyTorch Operator
Please refer to the installation instructions in the Kubeflow user guide . This installs pytorchjob
CRD and pytorch-operator
controller to manage the lifecycle of PyTorch jobs.
Creating a PyTorch Job
You can create PyTorch Job by defining a PyTorchJob config file. See the manifests for the distributed MNIST example . You may change the config file based on your requirements.
cat examples/mnist/v1/pytorch_job_mnist_gloo.yaml
Deploy the PyTorchJob resource to start training:
kubectl create -f examples/mnist/v1/pytorch_job_mnist_gloo.yaml
You should now be able to see the created pods matching the specified number of replicas.
kubectl get pods -l pytorch-job-name=pytorch-dist-mnist-gloo
Training should run for about 10 epochs and takes 5-10 minutes on a cpu cluster. Logs can be inspected to see its training progress.
PODNAME=$(kubectl get pods -l pytorch-job-name=pytorch-dist-mnist-gloo,pytorch-replica-type=master -o name)
kubectl logs -f ${PODNAME}
Monitoring a PyTorch Job
kubectl get -o yaml pytorchjobs pytorch-dist-mnist-gloo
See status section to monitor the job status. Here is sample output when the job is successfully completed.
apiVersion: v1
items:
- apiVersion: kubeflow.org/v1
kind: PyTorchJob
metadata:
creationTimestamp: 2019-01-11T00:51:48Z
generation: 1
name: pytorch-dist-mnist-gloo
namespace: default
resourceVersion: "2146573"
selfLink: /apis/kubeflow.org/v1/namespaces/kubeflow/pytorchjobs/pytorch-dist-mnist-gloo
uid: 13ad0e7f-153b-11e9-b5c1-42010a80001e
spec:
pytorchReplicaSpecs:
Master:
replicas: 1
restartPolicy: OnFailure
template:
spec:
containers:
- args:
- --backend
- gloo
image: gcr.io/kubeflow-ci/pytorch-dist-mnist-test:v1.0
name: pytorch
resources:
limits:
nvidia.com/gpu: "1"
Worker:
replicas: 1
restartPolicy: OnFailure
template:
spec:
containers:
- args:
- --backend
- gloo
image: gcr.io/kubeflow-ci/pytorch-dist-mnist-test:v1.0
name: pytorch
resources:
limits:
nvidia.com/gpu: "1"
status:
completionTime: 2019-01-11T01:03:15Z
conditions:
- lastTransitionTime: 2019-01-11T00:51:48Z
lastUpdateTime: 2019-01-11T00:51:48Z
message: PyTorchJob pytorch-dist-mnist-gloo is created.
reason: PyTorchJobCreated
status: "True"
type: Created
- lastTransitionTime: 2019-01-11T00:57:22Z
lastUpdateTime: 2019-01-11T00:57:22Z
message: PyTorchJob pytorch-dist-mnist-gloo is running.
reason: PyTorchJobRunning
status: "False"
type: Running
- lastTransitionTime: 2019-01-11T01:03:15Z
lastUpdateTime: 2019-01-11T01:03:15Z
message: PyTorchJob pytorch-dist-mnist-gloo is successfully completed.
reason: PyTorchJobSucceeded
status: "True"
type: Succeeded
replicaStatuses:
Master:
succeeded: 1
Worker:
succeeded: 1
startTime: 2019-01-11T00:57:22Z
Contributing
Please refer to the developer_guide .
请发表评论