• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

diegoavillegasg/IMU-GNSS-Lidar-sensor-fusion-using-Extended-Kalman-Filter-for-St ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

diegoavillegasg/IMU-GNSS-Lidar-sensor-fusion-using-Extended-Kalman-Filter-for-State-Estimation

开源软件地址(OpenSource Url):

https://github.com/diegoavillegasg/IMU-GNSS-Lidar-sensor-fusion-using-Extended-Kalman-Filter-for-State-Estimation

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

IMU-GNSS-Lidar-sensor-fusion-using-Extended-Kalman-Filter-for-State-Estimation

State estimation is so critical for autonomous vehicles (AV). It's the way the AV asks himself "Where am I? How I'm moving?" So, the state is an answer to where you are. That's the state estimation question. To answer it in the most likely right way, you need to use sensor data and even more, fuse the different sources of information to make stronger your believe about your current state. To fuse sensor data we used the Kalman Filter that has two basic steps, Prediction and Correction step. The Prediction step is based on the vehicle motion model that is feeded with IMU sensor data at a higher rate than data comes from GNSS (GPS) or Lidar sensor. Whilst the Correction step is executed every time a GPS or Lidar signal arrives to the vehicle, producing a corrected state.

alt text




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap