An officical implementation of AutoScale localization-based method, you can find regression-based method from here.
AutoScale leverages a simple yet effective Learning to Scale (L2S) module to cope with significant scale variations in both regression and localization.
Qualitative visualization of distance label maps given by the proposed AutoScale.
Result of detected person locations
.
Red points are the ground-truth. To more clearly present our localization results, we generate bounding boxes (green boxes) according to the KNN distance of each point, which follows and compares with LSC-CNN.
git clone https://github.com/dk-liang/AutoScale.git cd AutoScale chmod -R 777 ./count_localminma
Download Dataset and Model
Generate target
Generate images list
Edit "make_npydata.py" to change the path to your original dataset folder.
Run python make_npydata.py
Test python val.py --test_dataset qnrf --pre ./model/QNRF/model_best.pth --gpu_id 0 python val.py --test_dataset jhu --pre ./model/JHU/model_best.pth --gpu_id 0 python val.py --test_dataset nwpu --pre ./model/NWPU/model_best.pth --gpu_id 0 python val.py --test_dataset ShanghaiA --pre ./model/ShanghaiA/model_best.pth --gpu_id 0 python val.py --test_dataset ShanghaiB --pre ./model/ShanghaiB/model_best.pth --gpu_id 0
More config information is provided in config.py
References
If you are interested in AutoScale, please cite our work:
@article{autoscale,
title={AutoScale: Learning to Scale for Crowd Counting},
author={Xu, Chenfeng and Liang, Dingkang and Xu, Yongchao and Bai, Song and Zhan, Wei and Tomizuka, Masayoshi and Bai, Xiang},
journal={Int J Comput Vis},
year={2022}
}
and
@inproceedings{xu2019learn,
title={Learn to Scale: Generating Multipolar Normalized Density Maps for Crowd Counting},
author={Xu, Chenfeng and Qiu, Kai and Fu, Jianlong and Bai, Song and Xu, Yongchao and Bai, Xiang},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={8382--8390},
year={2019}
}
请发表评论