开源软件名称(OpenSource Name):Jeff-sjtu/sampling-argmax开源软件地址(OpenSource Url):https://github.com/Jeff-sjtu/sampling-argmax开源编程语言(OpenSource Language):Python 99.5%开源软件介绍(OpenSource Introduction):Localization with Sampling-Argmax[
Requirements
Install
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0
python setup.py develop Fetch dataPlease download data from MSCOCO, Human3.6M and MTFL. Download and extract them under
Train from scratch# COCO Keypoint
./scripts/train_pose.sh configs/coco/256x192_res50_lr1e-3_1x-simple-integral.yaml coco_samp
# Human3.6M
./scripts/train_pose.sh configs/h36m/256x192_adam_lr1e-3-simple_3d_base_1x_h36mmpii.yaml h36m_samp
# MTFL
./scripts/train_mtfl.sh configs/mtfl/256x192_res50_lr1e-3_1x-mtfl-simple-integral.yaml mtfl_samp Evaluation# COCO Keypoint
./scripts/validate_pose.sh configs/coco/256x192_res50_lr1e-3_1x-simple-integral.yaml ${CKPT}
# Human3.6M
./scripts/validate_pose.sh configs/h36m/256x192_adam_lr1e-3-simple_3d_base_1x_h36mmpii.yaml ${CKPT}
# MTFL
./scripts/validate_mtfl.sh configs/mtfl/256x192_res50_lr1e-3_1x-mtfl-simple-integral.yaml ${CKPT} ResultsCOCO KeypointResults on COCO validation set:
Human3.6MResults on S9 and S11:
MTFLResults on MTFL:
If you find our code or paper useful, please consider citing @inproceedings{li2021localization,
title={Localization with Sampling-Argmax},
author={Li, Jiefeng and Chen, Tong and Shi, Ruiqi and Lou, Yujing and Li, Yong-Lu and Lu, Cewu},
booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
year={2021}
} |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论