• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

hmgoforth/gps-denied-uav-localization

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

hmgoforth/gps-denied-uav-localization

开源软件地址(OpenSource Url):

https://github.com/hmgoforth/gps-denied-uav-localization

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

GPS-Denied UAV Localization using Pre-existing Satellite Imagery

This is the repo for our paper, GPS-Denied UAV Localization using Pre-existing Satellite Imagery.

Dependencies

To train the deep features from satellite images, and to test on the flight datasets, we used

  • Python 3.6.2,
  • PyTorch 0.3.0
  • OpenCV 3.3.0-dev
  • SciPy 0.19.1
  • Matplotlib 2.0.2

Download dataset folders from this Google Drive and add to top level of repo after downloading.

Training and Testing Deep Features

In deep_feat/, fine-tune VGG16 conv3 block with New Jersey dataset ('woodbridge'):

python3 evaluate.py train woodbridge ../sat_data/ trained_model_output.pth ../models/vgg16_model.pth

Testing Alignment on UAV Datasets

In optimize/, testing alignment on Village dataset using trained model, aligning every UAV image in dataset sequentially with the map:

python3 pose_opt.py sliding_window -image_dir ../village/frames/ -image_dir_ext *.JPG -motion_param_loc ../village/P_village.csv -map_loc ../village/map_village.jpg -model_path ../models/conv_02_17_18_1833.pth -opt_img_height 100 -img_h_rel_pose 1036.8 -opt_param_save_loc ../village/test_out.mat

Testing alignment on Gravel-Pit dataset using trained model:

python3 pose_opt.py sliding_window -image_dir ../gravel_pit/frames/ -image_dir_ext *.JPG -motion_param_loc ../gravel_pit/P_gravel_pit.csv -map_loc ../gravel_pit/map_gravel_pit.jpg -model_path ../models/conv_02_17_18_1833.pth -opt_img_height 100 -img_h_rel_pose 864 -opt_param_save_loc ../gravel_pit/test_out.mat

See argparse help for argument documentation.




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap