• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

PingjunChen/tissueloc: Whole Slide Digital Pathology Image Tissue Localization

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

PingjunChen/tissueloc

开源软件地址(OpenSource Url):

https://github.com/PingjunChen/tissueloc

开源编程语言(OpenSource Language):

Python 90.5%

开源软件介绍(OpenSource Introduction):

tissueloc: Whole slide digital pathology image tissue localization

Codacy Badge codecov Build Status Documentation Status PyPI version DOI Downloads Banner

Please consider star this repo if you find tissueloc to be helpful for your work.

Installation

  1. Install OpenSlide.
$ sudo apt-get install openslide-tools
  1. Installing Python dependencies.
$ pip install scikit-image==0.14.2
$ pip install opencv-python==4.1.2.30
$ pip install openslide-python==1.1.1
  1. Install tissueloc.
$ pip install tissueloc==2.1.0

Usage example

Interface

def locate_tissue_cnts(slide_path,
                       max_img_size=2048,
                       smooth_sigma=13,
                       thresh_val = 0.80,
                       min_tissue_size=10000):
    """ Locate tissue contours of whole slide image
    Parameters
    ----------
    slide_path : valid slide path
        The slide to locate the tissue.
    max_img_size: int
        Max height and width for the size of slide with selected level.
    smooth_sigma: int
        Gaussian smoothing sigma.
    thresh_val: float
        Thresholding value.
    min_tissue_size: int
        Minimum tissue area.
    Returns
    -------
    cnts: list
        List of all contours coordinates of tissues.
    d_factor: int
        Downsampling factor of selected level compared to level 0
    """

Demo

Testing slide can be downloaded from Figshare.

import tissueloc as tl
slide_path = "../data/SoftTissue/TCGA-B9EB312E82F6.svs"
# locate tissue contours with default parameters
cnts, d_factor = tl.locate_tissue_cnts(slide_path, max_img_size=2048, smooth_sigma=13,
                                       thresh_val=0.80,min_tissue_size=10000)

Documentation

Hosted in https://tissueloc.readthedocs.io, powered by readthedocs and Sphinx.

Contributing

tissueloc is an open source project and anyone is welcome to contribute. An easy way to get started is by suggesting a new enhancement on the Issues. If you have found a bug, then either report this through Issues, or even better, make a fork of the repository, fix the bug and then create a Pull Requests to get the fix into the master branch.

We would like to test this package on more diversified digital slides. Slides (low level images would be better) and their corresponding results are also very welcome as Pull Requests.

License

tissueloc is free software made available under the MIT License. For details see the LICENSE file.

Contributors

See the AUTHORS.md file for a complete list of contributors to the project.

Citing

tissueloc is published in the Journal of Open Source Software - please consider cite if it's useful for your research:

@article{chen2019tissueloc,
  author    = {Pingjun Chen and Lin Yang},
  title     = {tissueloc: Whole slide digital pathology image tissue localization},
  journal   = {J. Open Source Software},
  volume    = {4},
  number    = {33},
  pages     = {1148},
  year      = {2019},
  url       = {https://doi.org/10.21105/joss.01148},
  doi       = {10.21105/joss.01148}
}



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap