开源软件名称(OpenSource Name):vadimkantorov/contextlocnet开源软件地址(OpenSource Url):https://github.com/vadimkantorov/contextlocnet开源编程语言(OpenSource Language):Lua 81.6%开源软件介绍(OpenSource Introduction):Information & ContactIf you use this code, please cite our work:
The results are available on the project website and in the paper (arXiv page). Please submit bugs and ask questions on GitHub directly, for other inquiries please contact Vadim Kantorov. This is a joint work of Vadim Kantorov, Maxime Oquab, Minsu Cho, and Ivan Laptev. Running the code
We strongly recommend using wigwam for this (fix the paths to wigwam install torch hdf5 matio protobuf octave -DPATH_TO_NVCC="/path/to/cuda/bin/nvcc" -DPATH_TO_CUDNN_SO="/path/to/cudnn/lib64/libcudnn.so"
wigwam install lua-rapidjson lua-hdf5 lua-matio lua-loadcaffe lua-xml
wigwam in # execute this to make the installed libraries available
git clone https://github.com/vadimkantorov/contextlocnet
cd contextlocnet
(cd ./model && luarocks make)
make -f data/common/Makefile download_and_extract_VOC2007 download_VGGF
# make -f data/common/Makefile download_and_extract_VOC2012
export DATASET=VOC2007
th preprocess.lua VOC VGGF
export CUDA_VISIBLE_DEVICES=0
th train.lua model/contrastive_s.lua # will produce data/model_epoch30.h5 and data/log.json
SUBSET=trainval th test.lua data/model_epoch30.h5 # will produce data/scores_trainval.h5
th corloc.lua data/scores_trainval.h5 # will produce data/corloc.json
SUBSET=test th test.lua data/model_epoch30.h5 # will produce data/scores_test.h5
th detection_mAP.lua data/scores_test.h5 # will produce data/detection_mAP.json Pretrained models for VOC 2007
Acknowledgements & NotesWe greatly thank Hakan Bilen, Relja Arandjelović and Soumith Chintala for fruitful discussion and help. This work would not have been possible without prior work: Hakan Bilen's WSDDN, Spyros Gidaris's LocNet, Sergey Zagoruyko's loadcaffe, Facebook FAIR's fbnn/Optim.lua. The code is released under the MIT license. |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论