开源软件名称(OpenSource Name):daviswer/fewshotlocal开源软件地址(OpenSource Url):https://github.com/daviswer/fewshotlocal开源编程语言(OpenSource Language):Jupyter Notebook 86.3%开源软件介绍(OpenSource Introduction):Few-Shot Learning with Localization in Realistic SettingsCode for the CVPR 2019 paper Few-Shot Learning with Localization in Realistic Settings. Due to the sheer number of independent moving parts and user-defined parameters, we are providing our code as a series of interactive Jupyter notebooks rather than automated Python scripts. If you find this code or paper useful to your research work, please consider citing it using the following bibtex:
SetupThis code requires Pytorch and torchvision 1.0.0 or higher with cuda support, and Jupyter. It has been tested on Ubuntu 16.04. The meta-iNat and tiered meta-iNat ("Supercategory meta-iNat") datasets can be downloaded from here, or constructed manually. To construct meta-iNat from scratch, you must download the iNat2017 dataset. Download and unpack the iNat2017 training/validation images, and the training bounding box annotations, to a directory of your choice. The images and bounding box annotations can be found here. Running the ScriptsIf you are constructing meta-iNat from scratch, begin by running the Setup notebook, which constructs the meta-iNat dataset or a variant according to user-defined parameters. The default parameters reproduce the meta-iNat dataset used in the paper. If you downloaded meta-iNat directly, you can skip this step. The Train notebook trains an ensemble of learners in parallel, according to user-defined parameters. The default parameters reproduce the best-performing model in the paper (batch folding, covariance pooling, and few-shot localization). The Evaluate notebook tests your trained models on the reference/query images, according to user-defined parameters. It is highly recommended that your parameters for evaluating a given model match the ones used to train it. The default parameters for the evaluation code match those for the training code. ResultsThree-digit model names indicate the presence or absence of batch folding, localization, and covariance pooling, in that order. For example, ‘101’ indicates a model with batch folding and covariance pooling, but no localization. '000' is a standard prototypical network. Because two versions of localization exist, we use ‘0’ to indicate no localization, ‘1’ for few-shot localization, and ‘2’ for unsupervised localization. A ‘*’ indicates a model presented in the main paper. |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论