开源软件名称(OpenSource Name):hiroyuki-kasai/GDLibrary开源软件地址(OpenSource Url):https://github.com/hiroyuki-kasai/GDLibrary开源编程语言(OpenSource Language):MATLAB 100.0%开源软件介绍(OpenSource Introduction):GDLibrary : Gradient Descent Library in MATLABAuthors: Hiroyuki Kasai Last page update: April 19, 2017 Latest library version: 1.0.1 (see Release notes for more info) IntroductionThe GDLibrary is a pure-Matlab library of a collection of unconstrained optimization algorithms. This solves an unconstrained minimization problem of the form, min f(x). Note that the SGDLibrary internally contains this GDLibrary. List of gradient algorithms available in GDLibrary
line-search algorithms available in GDLibraryList of
Supported problems
Folders and files./ - Top directory. ./README.md - This readme file. ./run_me_first.m - The scipt that you need to run first. ./demo.m - Demonstration script to check and understand this package easily. |plotter/ - Contains plotting tools to show convergence results and various plots. |tool/ - Some auxiliary tools for this project. |problem/ - Problem definition files to be solved. |gd_solver/ - Contains various gradient descent optimization algorithms. |gd_test/ - Some helpful test scripts to use this package. First to doRun %% First run the setup script
run_me_first; Rosenbrock problem)Usage example 1 (Now, just execute %% Execute the demonstration script
demo; The "demo.m" file contains below. %% define problem definitions
% set number of dimensions
d = 2;
problem = rosenbrock(d);
%% calculate solution
w_opt = problem.calc_solution();
%% general options for optimization algorithms
options.w_init = zeros(d,1);
% set verbose mode
options.verbose = true;
% set optimal solution
options.f_opt = problem.cost(w_opt);
% set store history of solutions
options.store_w = true;
%% perform GD with backtracking line search
options.step_alg = 'backtracking';
[w_gd, info_list_gd] = gd(problem, options);
%% perform NCG with backtracking line search
options.step_alg = 'backtracking';
[w_ncg, info_list_ncd] = ncg(problem, options);
%% perform L-BFGS with strong wolfe line search
options.step_alg = 'strong_wolfe';
[w_lbfgs, info_list_lbfgs] = lbfgs(problem, options);
%% plot all
close all;
% display epoch vs cost/gnorm
display_graph('iter','cost', {'GD-BKT', 'NCG-BKT', 'LBFGS-WOLFE'}, {w_gd, w_ncg, w_lbfgs}, {info_list_gd, info_list_ncd, info_list_lbfgs});
% display optimality gap vs grads
display_graph('iter','gnorm', {'GD-BKT', 'NCG-BKT', 'LBFGS-WOLFE'}, {w_gd, w_ncg, w_lbfgs}, {info_list_gd, info_list_ncd, info_list_lbfgs});
% draw convergence sequence
w_history = cell(1);
cost_history = cell(1);
w_history{1} = info_list_gd.w;
w_history{2} = info_list_ncd.w;
w_history{3} = info_list_lbfgs.w;
cost_history{1} = info_list_gd.cost;
cost_history{2} = info_list_ncd.cost;
cost_history{3} = info_list_lbfgs.cost;
draw_convergence_sequence(problem, w_opt, {'GD-BKT', 'NCG-BKT', 'LBFGS-WOLFE'}, w_history, cost_history);
LicenseThe GDLibrary is free and open source for academic/research purposes (non-commercial). Problems or questionsIf you have any problems or questions, please contact the author: Hiroyuki Kasai (email: kasai at is dot uec dot ac dot jp) Release Notes
|
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论