开源软件名称(OpenSource Name):MalteKurz/VineCopulaMatlab开源软件地址(OpenSource Url):https://github.com/MalteKurz/VineCopulaMatlab开源编程语言(OpenSource Language):MATLAB 83.2%开源软件介绍(OpenSource Introduction):VineCopulaMatlab toolboxA MATLAB toolbox for vine copulas based on the C++ shared library VineCopulaCPP Description of the Vine Copulas with C++ toolboxThe toolbox can be used for high-dimensional dependence modeling with vine copula models. A key feature of the toolbox is a framework, which allows to test whether the simplifying assumption is a reasonable assumption for approximating high-dimensional distributions using simplified vine copula models. Highlights
Hosting and bug reporting
DemoPlease see the demo for further details about the functionality of the VineCPP toolbox. Remarks
Dependencies
References[1] Aas, K., C. Czado, A. Frigessi and H. Bakken (2009), "Pair-copula constructions of multiple dependence", Insurance: Mathematics and Economics 44(2), pp. 182-198. [2] Acar, E. F., C. Genest and J. Neslehová (2012), "Beyond simplified pair-copula constructions", Journal of Multivariate Analysis 110, pp. 74-90. [3] Balakrishnan, N. and Lai, C.-D. (2009), "Continuous Bivariate Distributions", 2. ed., New York, NY: Springer. [4] Bedford, T. and R. M. Cooke (2001), "Probability density decomposition for conditionally dependent random variables modeled by vines", Annals of Mathematics and Artificial Intelligence 32 (1), pp. 245-268. [5] Bedford, T. and R. M. Cooke (2002), "Vines -- A new graphical model for dependent random variables", The Annals of Statistics 30(4), pp. 1031-1068. [6] Brechmann, E. C. and U. Schepsmeier (2013), "Modeling Dependence with C- and D-Vine Copulas: The R-Package CDVine", Journal of Statistical Software 52(3), R package version 1.1-13, pp. 1-27, url: http://CRAN.R-project.org/package=CDVine. [7] Czado, C., U. Schepsmeier, and A. Min (2012), "Maximum likelihood estimation of mixed C-vines with application to exchange rates", Statistical Modelling 12(3), pp. 229-255. [8] Eschenburg, P. (2013), "Properties of extreme-value copulas", Diploma Thesis, Fakultät für Mathematik, Technische Universität München, url: http://mediatum.ub.tum.de/download/1145695/1145695.pdf. [9] Genest, C. and A. Favre (2007), "Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask", Journal of Hydrologic Engineering 12(4), pp. 347-368. [10] Hobaek-Haff, I., K. Aas and A. Frigessi (2010), "On the simplified pair-copula construction -- Simply useful or too simplistic?", Journal of Multivariate Analysis 101(5), pp. 1296-1310. [11] Joe, H. (1996), "Families of m-Variate Distributions With Given Margins and m(m-1)/2 Bivariate Dependence Parameters", Distributions with Fixed Marginals and Related Topics, ed. by L. Rüschendorf, B. Schweizer, and M. D. Taylor, Hayward, CA: Institute of Mathematical Statistics. [12] Joe, H. (1997), Multivariate models and dependence concepts, 1. ed., reprint., Monographs on statistics and applied probability; 73, Boca Raton, Fla. [u.a.]: Chapman & Hall/CRC. [13] Kojadinovic, I. and M. Holmes (2009), "Tests of independence among continuous random vectors based on Cramér-von Mises functionals of the empirical copula process", Journal of Multivariate Analysis 100(6), pp. 1137-1154. [14] Kosorok, M. R. (2008), Introduction to Empirical Processes and Semiparametric Inference, Springer Series in Statistics, New York, NY: Springer. [15] Kurowicka, D. and H. Joe (Eds.) (2011), "Dependece Modeling -- Vine Copula Handbook", Singapore: World Scientific Publishing Co. Pte. Ltd. [16] Nelsen, R. B. (2006), "An introduction to copulas", 2. ed., Springer series instatistics, New York, NY: Springer. [17] Omelka, M. and M. Pauly (2012), "Testing equality of correlation coefficients in two populations via permutation methods, Journal of Statistical Planning and Inference 142, pp. 1396-1406. [18] Patton, A. J. (2002), "Applications of Copula Theory in Financial Econometrics", Unpublished Ph.D. dissertation, University of Colifornia, San Diego, url: http://www.amstat.org/sections/bus_econ/papers/patton_dissertation.pdf. [19] Patton, A. J. (2006), "Modelling asymmetric exchange rate dependence", International Economic Review 47(2), pp. 527-556. [20] Quessy, J.-F. (2010), "Applications and asymptotic power of marginal-free tests of stochastic vectorial independence", Journal of Statistical Planning and Inference 140(11), pp. 3058-3075. [21] Rémillard, B. (2013), "Statistical Methods For Financial Engineering", Boca Raton, FL: Chapman & Hall. [22] Rémillard, B. and O. Scaillet (2009), "Testing for equality between two copulas", Journal of Multivariate Analysis 100(3), pp. 377-386. [23] Schepsmeier, U., J. Stöber and E. C. Brechmann (2013), VineCopula: Statistical inference of vine copulas, R package version 1.2, url: http://CRAN.R-project.org/package=VineCopula. [24] Segers, J. (2012), "Asymptotics of empirical copula processes under non-restrictive smoothness assumptions", Bernoulli 18(3), pp. 764-782. [25] Spanhel, F., Kurz, M.S., 2015. Simplified vine copula models: Approximations based on the simplifying assumption. ArXiv e-prints https://arxiv.org/abs/1510.06971. [26] Stöber, J., H. Joe and C. Czado (2013), "Simplified pair copula constructions -- Limitations and extensions", Journal of Multivariate Analysis 119, pp. 101-118. [27] van der Vaart, A. W. and J. A. Wellner (1996), Weak Convergence and Empirical Processes -- With Applications to Statistics, Springer Series in Statistics, New York [u.a.]: Springer. Author: Malte Kurz |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论