• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

astroML/astroML: Machine learning, statistics, and data mining for astronomy and ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

astroML/astroML

开源软件地址(OpenSource Url):

https://github.com/astroML/astroML

开源编程语言(OpenSource Language):

Python 99.8%

开源软件介绍(OpenSource Introduction):

AstroML: Machine Learning for Astronomy

Reference proceedings Github Actions CI Status Latest PyPI version PyPI download stat License badge

AstroML is a Python module for machine learning and data mining built on numpy, scipy, scikit-learn, and matplotlib, and distributed under the BSD license. It contains a growing library of statistical and machine learning routines for analyzing astronomical data in python, loaders for several open astronomical datasets, and a large suite of examples of analyzing and visualizing astronomical datasets.

This project was started in 2012 by Jake VanderPlas to accompany the book Statistics, Data Mining, and Machine Learning in Astronomy by Zeljko Ivezic, Andrew Connolly, Jacob VanderPlas, and Alex Gray.

Important Links

Installation

Before installation, make sure your system meets the prerequisites listed in Dependencies, listed below.

Core

To install the core astroML package in your home directory, use:

pip install astroML

A conda package for astroML is also available either on the conda-forge or on the astropy conda channels:

conda install -c astropy astroML

The core package is pure python, so installation should be straightforward on most systems. To install from source, use:

python setup.py install

You can specify an arbitrary directory for installation using:

python setup.py install --prefix='/some/path'

To install system-wide on Linux/Unix systems:

python setup.py build
sudo python setup.py install

Dependencies

There are two levels of dependencies in astroML. Core dependencies are required for the core astroML package. Optional dependencies are required to run some (but not all) of the example scripts. Individual example scripts will list their optional dependencies at the top of the file.

Core Dependencies

The core astroML package requires the following (some of the functionality might work with older versions):

Optional Dependencies

Several of the example scripts require specialized or upgraded packages. These requirements are listed at the top of the particular scripts

  • HEALPy provides an interface to the HEALPix pixelization scheme, as well as fast spherical harmonic transforms.

Development

This package is designed to be a repository for well-written astronomy code, and submissions of new routines are encouraged. After installing the version-control system Git, you can check out the latest sources from GitHub using:

git clone git://github.com/astroML/astroML.git

or if you have write privileges:

git clone git@github.com:astroML/astroML.git

Contribution

We strongly encourage contributions of useful astronomy-related code: for astroML to be a relevant tool for the python/astronomy community, it will need to grow with the field of research. There are a few guidelines for contribution:

General

Any contribution should be done through the github pull request system (for more information, see the help page Code submitted to astroML should conform to a BSD-style license, and follow the PEP8 style guide.

Documentation and Examples

All submitted code should be documented following the Numpy Documentation Guide. This is a unified documentation style used by many packages in the scipy universe.

In addition, it is highly recommended to create example scripts that show the usefulness of the method on an astronomical dataset (preferably making use of the loaders in astroML.datasets). These example scripts are in the examples subdirectory of the main source repository.

Authors

Package Author

Maintainer

Code Contribution




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
iamtrask/PySonar: Decentralized Machine Learning Client发布时间:2022-08-19
下一篇:
frnsys/ai_notes: machine learning/artificial intelligence notes发布时间:2022-08-19
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap