• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

jjakimoto/finance_ml: Advances in Financial Machine Learning

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

jjakimoto/finance_ml

开源软件地址(OpenSource Url):

https://github.com/jjakimoto/finance_ml

开源编程语言(OpenSource Language):

Jupyter Notebook 97.8%

开源软件介绍(OpenSource Introduction):

finance_ml

Python implementations of Machine Learning helper functions for Quantiative Finance based on books, Advances in Financial Machine Learning and Machine Learning for Asset Managers , written by Marcos Lopez de Prado.

Installation

Excute the following command

python setup.py install

or

Simply add your/path/to/finace_ml to your PYTHONPATH.

Implementation

The following functions are implemented:

  • Labeling
  • Multiporcessing
  • Sampling
  • Feature Selection
  • Asset Allcation
  • Breakout Detection

Examples

Some of example notebooks are found under the folder MLAssetManagers.

multiprocessing

Parallel computing using multiprocessing library. Here is the example of applying function to each element with parallelization.

import pandas as pd
import numpy as np

def apply_func(x):
    return x ** 2

def func(df, timestamps, f):
    df_ = df.loc[timestamps]
    for idx, x in df_.items():
        df_.loc[idx] = f(x)
    return df_
    
df = pd.Series(np.random.randn(10000))
from finance_ml.multiprocessing import mp_pandas_obj

results = mp_pandas_obj(func, pd_obj=('timestamps', df.index),
                        num_threads=24, df=df, f=apply_func)
print(results.head())

Output:

0    0.449278
1    1.411846
2    0.157630
3    4.949410
4    0.601459

For more detail, please refer to example notebook!




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap