• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

d-li14/mobilenetv3.pytorch: 74.3% MobileNetV3-Large and 67.2% MobileNetV3-Small ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

d-li14/mobilenetv3.pytorch

开源软件地址(OpenSource Url):

https://github.com/d-li14/mobilenetv3.pytorch

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

PyTorch Implementation of MobileNet V3

Reproduction of MobileNet V3 architecture as described in Searching for MobileNetV3 by Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam on ILSVRC2012 benchmark with PyTorch framework.

Requirements

Dataset

Download the ImageNet dataset and move validation images to labeled subfolders. To do this, you can use the following script: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

Training recipe

  • batch size 1024
  • epoch 150
  • learning rate 0.4 (ramps up from 0.1 to 0.4 in the first 5 epochs)
  • LR decay strategy cosine
  • weight decay 0.00004
  • dropout rate 0.2 (0.1 for Small-version 0.75)
  • no weight decay biases and BN
  • label smoothing 0.1 (only for Large-version)

Models

Architecture # Parameters MFLOPs Top-1 / Top-5 Accuracy (%)
MobileNetV3-Large 1.0 5.483M 216.60 74.280 / 91.928
MobileNetV3-Large 0.75 3.994M 154.57 72.842 / 90.846
MobileNetV3-Small 1.0 2.543M 56.52 67.214 / 87.304
MobileNetV3-Small 0.75 2.042M 43.40 64.876 / 85.498
from mobilenetv3 import mobilenetv3_large, mobilenetv3_small

net_large = mobilenetv3_large()
net_small = mobilenetv3_small()

net_large.load_state_dict(torch.load('pretrained/mobilenetv3-large-1cd25616.pth'))
net_small.load_state_dict(torch.load('pretrained/mobilenetv3-small-55df8e1f.pth'))

Citation

@InProceedings{Howard_2019_ICCV,
author = {Howard, Andrew and Sandler, Mark and Chu, Grace and Chen, Liang-Chieh and Chen, Bo and Tan, Mingxing and Wang, Weijun and Zhu, Yukun and Pang, Ruoming and Vasudevan, Vijay and Le, Quoc V. and Adam, Hartwig},
title = {Searching for MobileNetV3},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}

If you find this implementation helpful in your research, please also consider citing:

@InProceedings{Li_2019_ICCV,
author = {Li, Duo and Zhou, Aojun and Yao, Anbang},
title = {HBONet: Harmonious Bottleneck on Two Orthogonal Dimensions},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap