• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python plotting.setup_text_plots函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中astroML.plotting.setup_text_plots函数的典型用法代码示例。如果您正苦于以下问题:Python setup_text_plots函数的具体用法?Python setup_text_plots怎么用?Python setup_text_plots使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了setup_text_plots函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: plot

def plot(fname):
	setup_text_plots(fontsize=10, usetex=True)

	data = dl.read_dat(fname,',')
	n = len(data[0]) - 4
	f,plots = plt.subplots(int(np.ceil(n/2))+n%2,2, sharex=False,sharey=False)

	sigmas = []
	for sigma in range(0,n):
		sigmas.append(dl.get_column(data,4+sigma))

	for j in range(0,len(sigmas)):
		sigma = sigmas[j]
		good_sigmas = []
		for i in range(0,len(sigma)):
			if sigma[i] != 'nan':
				good_sigmas.append((float(sigma[i])))
		good_sigmas = np.sort(good_sigmas)
		good_sigmas = good_sigmas[0:int(.8*len(good_sigmas))]
		hist = np.histogram(good_sigmas,bins = 175)
		plots[np.ceil((j)/2)][(j)%2].bar(hist[1][:-1],hist[0],width=hist[1][1]-hist[1][0])
		plots[np.ceil((j)/2)][(j)%2].set_xlabel('$\sigma_{'+str(j+1)+'}$',fontsize=40)
		plots[np.ceil((j)/2)][(j)%2].set_ylabel('$n$',fontsize=40)
		plots[np.ceil((j)/2)][(j)%2].text(plots[np.ceil((j)/2)][(j)%2].get_xlim()[1]*0.9,plots[np.ceil((j)/2)][(j)%2].get_ylim()[1]*0.75,'$\sigma_{'+str(j+1)+'}$',fontsize=40)
		plots[np.ceil((j)/2)][(j)%2].tick_params(axis='both', which='major', labelsize=20)

		f.set_size_inches(32,20)
		f.savefig('histograms/sigma_histo_' + fname+'.png', dpi = 300)
开发者ID:DanielAllepuz,项目名称:K2,代码行数:28,代码来源:histogram_sigma.py


示例2: compute_Power

def compute_Power():

    from astroML.time_series import generate_power_law
    from astroML.fourier import PSD_continuous

    from astroML.plotting import setup_text_plots
    setup_text_plots(fontsize=8, usetex=False)

    N = 1024
    dt = 0.01
    factor = 100

    t = dt * np.arange(N)
    random_state = np.random.RandomState(1)

    fig = plt.figure(figsize=(5, 3.75))
    fig.subplots_adjust(wspace=0.05)

    for i, beta in enumerate([1.0, 2.0]):
    # Generate the light curve and compute the PSD
        x = factor * generate_power_law(N, dt, beta, random_state=random_state)
        f, PSD = PSD_continuous(t, x)

    # First axes: plot the time series
        ax1 = fig.add_subplot(221 + i)
        ax1.plot(t, x, '-k')

        ax1.text(0.95, 0.05, r"$P(f) \propto f^{-%i}$" % beta,
             ha='right', va='bottom', transform=ax1.transAxes)

        ax1.set_xlim(0, 10.24)
        ax1.set_ylim(-1.5, 1.5)

        ax1.set_xlabel(r'$t$')

    # Second axes: plot the PSD
        ax2 = fig.add_subplot(223 + i, xscale='log', yscale='log')
        ax2.plot(f, PSD, '-k')
        ax2.plot(f[1:], (factor * dt) ** 2 * (2 * np.pi * f[1:]) ** -beta, '--k')

        ax2.set_xlim(1E-1, 60)
        ax2.set_ylim(1E-6, 1E1)

        ax2.set_xlabel(r'$f$')

        if i == 1:
            ax1.yaxis.set_major_formatter(plt.NullFormatter())
            ax2.yaxis.set_major_formatter(plt.NullFormatter())
        else:
            ax1.set_ylabel(r'${\rm counts}$')
            ax2.set_ylabel(r'$PSD(f)$')

    plt.show()
开发者ID:share-with-me,项目名称:flask_ex,代码行数:53,代码来源:compute.py


示例3: plot_num_density

def plot_num_density(zbins_list, dist_z_list, err_z_list, titles=None,
        markers=None):

    ''' Plots the number density of galaxies for multiple samples.
    Specifically, rho(z) / [z/0.08]^2 vs z where rho(z) is the number density
    of galaxies at a given redshift. Reproduces the top right plot of Figure
    4.10.

    Parameters
    ----------
    zbins_list : array-like
        Tuple of absolute redshift bin centers.
    dist_z_list : tuple, list
        Tuple of redshift count distributions.
    err_z_list : tuple, list
        Tuple of redshift count errors.
    titles : tuple, list
        Tuple of titles for the different distributions.
    markers : tuple, list
        Tuple of markers for the different distributions.

    Returns
    -------
    None

    '''

    from astroML.plotting import setup_text_plots
    setup_text_plots(fontsize=8, usetex=False)

    fig = plt.figure(figsize=(8, 8))

    ax = fig.add_subplot(1, 1, 1)
    for i in xrange(len(dist_z_list)):
        factor = 0.08 ** 2 / (0.5 * (zbins_list[i][1:] + \
                zbins_list[i][:-1])) ** 2

        ax.errorbar(0.5 * (zbins_list[i][1:] + zbins_list[i][:-1]),
                    factor * dist_z_list[i], factor * err_z_list[i],
                    fmt='-k' + markers[i], ecolor='gray', lw=1, ms=4,
                    label=titles[i])

    ax.legend(loc=1)
    ax.xaxis.set_major_locator(plt.MultipleLocator(0.01))
    ax.set_xlabel(r'$z$')
    ax.set_ylabel(r'$\rho(z) / [z / 0.08]^2$')
    ax.set_xlim(0.075, 0.125)
    ax.set_ylim(10, 25)

    plt.show()
开发者ID:brittlundgren,项目名称:py-astro-stat,代码行数:50,代码来源:histograms_example_solution.py


示例4: plot_separation

def plot_separation(test_R, sample_R):
    plt.clf()
    setup_text_plots(fontsize = 16, usetex = True)
    fig = plt.figure(figsize = (12,8))

    plt.hist(test_R, 50, histtype = 'step', color = 'red', lw = 2,
             label = 'Test', range = (-2.5,2.5))
    plt.hist(sample_R, 50, histtype = 'step', color = 'blue',lw = 2,
             label = 'Sample', range = (-2.5,2.5))

    plt.legend(loc="best")
    plt.xlabel("$\log(R/R_e)$", fontsize=18)
    plt.ylabel("Number", fontsize=18)
    plt.xlim(-2.5, 2.5)
    plt.show()
开发者ID:drphilmarshall,项目名称:empiriciSN,代码行数:15,代码来源:demo_funcs.py


示例5: plot_luminosity_function

def plot_luminosity_function(Mbins_list, dist_M_list, err_M_list, titles=None,
        markers=None):

    ''' Plots the normalized luminosity functions Phi(M) vs (M) for multiple
    samples. Reproduces the bottom right plot of Figure 4.10.

    Parameters
    ----------
    Mbins_list : array-like
        Tuple of absolute magnitude bin centers.
    dist_M_list : tuple, list
        Tuple of absolute magnitude count distributions.
    err_M_list : tuple, list
        Tuple of absolute magnitude count errors.
    titles : tuple, list
        Tuple of titles for the different distributions.
    markers : tuple, list
        Tuple of markers for the different distributions.

    Returns
    -------
    None

    '''

    from astroML.plotting import setup_text_plots
    setup_text_plots(fontsize=8, usetex=False)
    fig = plt.figure(figsize=(8, 8))
    ax = fig.add_subplot(111, yscale='log')

    # truncate the bins so the plot looks better
    for i in xrange(len(dist_M_list)):
        Mbins = Mbins_list[i][3:-1]
        dist_M = dist_M_list[i][3:-1]
        err_M = err_M_list[i][3:-1]

        ax.errorbar(0.5 * (Mbins[1:] + Mbins[:-1]), dist_M, err_M,
                    fmt='-k' + markers[i], ecolor='gray', lw=1, ms=4,
                    label=titles[i])

    ax.legend(loc=3)
    ax.xaxis.set_major_locator(plt.MultipleLocator(1.0))
    ax.set_xlabel(r'$M$')
    ax.set_ylabel(r'$\Phi(M)$')
    ax.set_xlim(-20, -23.5)
    ax.set_ylim(1E-5, 2)

    plt.show()
开发者ID:brittlundgren,项目名称:py-astro-stat,代码行数:48,代码来源:histograms_example_solution.py


示例6: plot

def plot(fname):
	setup_text_plots(fontsize=10, usetex=True)

	data = dl.read_dat(fname,',')
	print data[0]
	n = len(data[0]) - 4
	print int(np.ceil(n/2))+n%2
	f,plots = plt.subplots(int(np.ceil(n/2))+n%2,2, sharex=False,sharey=False)

	dwarf_flags = dl.get_column(data,1)
	kepmags = dl.get_column(data,3)
	Teffs = dl.get_column(data,2)
	sigmas = []
	for sigma in range(0,n):
		sigmas.append(dl.get_column(data,4+sigma))

	length = len(dl.get_column(data,0))
	for i in range(0,length):
		done = []
		for seg in range(0,n):
			done.append(seg)
			is_dwarf = dwarf_flags[i]
			if is_dwarf == '1.0' or is_dwarf == '1':
				symbol = 'd'
			elif is_dwarf == '0.0' or is_dwarf == '0':
				symbol = 'o'
			else:
				symbol = 'x'

			x = int(np.ceil((seg)/2))
			y = (seg)%2
			plots[x][y].set_ylabel('$\log{\sigma_{' + str(seg+1) +'}}$',fontsize=40)
			plots[x][y].set_xlabel('Kepler band magnitude',fontsize=20)
			plots[x][y].tick_params(axis='both', which='major', labelsize=20)
			plots[x][y].grid(True)
			plots[x][y].set_xlim([8.25,17])
			plots[x][y].set_ylim([-4.5,0])
			
			plots[x][y].text(15.25,-0.5,'Segment ' + str(seg+1),fontsize=30)
			if sigma != 'nan' and kepmags[i] != 'nan' and sigmas[seg][i] != 'nan' and sigmas[seg][i] != '':
				plots[x][y].scatter(float(kepmags[i]),np.log10(float(sigmas[seg][i])),marker=symbol,color=color_T(Teffs[i]))

		print fname + ' : ' + str(done) + ' : ' + str((i*100.0)/length) + '%'

	f.set_size_inches(32,32)
	f.savefig(fname+'.png', dpi = 300)
开发者ID:DanielAllepuz,项目名称:K2,代码行数:46,代码来源:plot_mag_vs_sigma.py


示例7: plot

def plot(fname):
	setup_text_plots(fontsize=10, usetex=True)

	data = dl.read_dat(fname,',')

	mags = dl.get_column(data,3)
	for i in range(0,len(mags)):
		if mags[i] == 'nan':
			del mags[i]
		else:
			mags[i] = float(mags[i])
	hist = np.histogram(mags,bins=100)
	plt.bar(hist[1][:-1],hist[0],width=hist[1][1]-hist[1][0])
	plt.xlabel('Kepler band magnitude',fontsize=50)
	plt.ylabel('$n$',fontsize=50)
	plt.tick_params(axis='both', which='major', labelsize=40)
	plt.gcf().set_size_inches(32,20)
	plt.gcf().savefig(fname.replace('evaluations/','histograms/mag/mag_histo_') +'.png', dpi = 300)
开发者ID:DanielAllepuz,项目名称:K2,代码行数:18,代码来源:histogram_mag.py


示例8: plot_bic

def plot_bic(param_range,bics,lowest_comp):
    plt.clf()
    setup_text_plots(fontsize=16, usetex=True)
    fig = plt.figure(figsize=(12, 6))
    plt.plot(param_range,bics,color='blue',lw=2, marker='o')
    plt.text(lowest_comp, bics.min() * 0.97 + .03 * bics.max(), '*',
             fontsize=14, ha='center')

    plt.xticks(param_range)
    plt.ylim(bics.min() - 0.05 * (bics.max() - bics.min()),
             bics.max() + 0.05 * (bics.max() - bics.min()))
    plt.xlim(param_range.min() - 1, param_range.max() + 1)

    plt.xticks(param_range,fontsize=14)
    plt.yticks(fontsize=14)

    plt.xlabel('Number of components',fontsize=18)
    plt.ylabel('BIC score',fontsize=18)

    plt.show()
开发者ID:heather999,项目名称:Twinkles,代码行数:20,代码来源:MatchingLensGalaxies_utilities.py


示例9: medians

def medians(fname):
	setup_text_plots(fontsize=10, usetex=True)

	data = dl.read_dat(fname,',')
	n = len(data[0]) - 4

	sigmas = []
	for sigma in range(0,n):
		sigmas.append(dl.get_column(data,4+sigma))

	medians = []
	for j in range(0,len(sigmas)):
		sigma = sigmas[j]
		good_sigmas = []
		for i in range(0,len(sigma)):
			if sigma[i] != 'nan':
				good_sigmas.append((float(sigma[i])))
		good_sigmas = np.sort(good_sigmas)
		good_sigmas = good_sigmas[0:int(.8*len(good_sigmas))]
		medians.append(np.median(good_sigmas))
	return medians
开发者ID:DanielAllepuz,项目名称:K2,代码行数:21,代码来源:segment_vs_sigma.py


示例10: setup_text_plots

"""
Code to generate 2D histograms of embedded spectral data.

Authored by OGT 3/15/16
"""

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from astroML.plotting import setup_text_plots
import matplotlib as mpl
plt.ion()

setup_text_plots(fontsize=18)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)
mpl.rc('font', size=18, family='serif', style='normal', variant='normal', stretch='normal', weight='bold')
mpl.rc('legend', labelspacing=0.1, handlelength=2, fontsize=12)

def get_contours(x, y, bins=(50, 50), ranges=None):
    if ranges:
        H, xedges, yedges = np.histogram2d(x, y, bins=bins, range=ranges)
    else:
        H, xedges, yedges = np.histogram2d(x, y, bins=bins)
    xmid = (xedges[1:] + xedges[:-1]) / 2.0
    ymid = (yedges[1:] + yedges[:-1]) / 2.0
    return xmid, ymid, H.T

def plot_2Dhist(x, y, xlabel=None, ylabel=None, cblabel=None, ranges=[[-0.007, 0.002],[-0.014, 0.005]], vmin=1, vmax=10**5, normed=False,
                filename=None, annotate_string=None, annotate_loc=None):
    xmid, ymid, H = get_contours(x, y, bins=(50, 50), ranges=ranges)
开发者ID:ogtelford,项目名称:prettyplots,代码行数:31,代码来源:histograms2d.py


示例11: plot_cont_galaxy

def plot_cont_galaxy(filename, N_bulge, N_disk, bin_no=100): #If you have enough particle resolution, choose 1000
    tmp = filename.split('.npy')
    t = tmp[0].split('galaxy_')[1]
    galaxy = np.load('%s'%(filename))
    
    x_gal = np.zeros_like(galaxy[0])
    y_gal = np.zeros_like(galaxy[1])
    z_gal = np.zeros_like(galaxy[2])
    cs_gal = galaxy[5]
    cont = galaxy[4]/np.sum(galaxy[4])
    
    # Bulge (Spherical to Cartesian)
    r_gal = galaxy[0,:N_bulge]
    theta_gal = galaxy[1,:N_bulge]
    phi_gal_sph = galaxy[2,:N_bulge]

    x_gal[:N_bulge] = r_gal*np.sin(theta_gal)*np.cos(phi_gal_sph)
    y_gal[:N_bulge] = r_gal*np.sin(theta_gal)*np.sin(phi_gal_sph)
    z_gal[:N_bulge] = r_gal*np.cos(theta_gal)
    
    # Disk (Cylindrical to Cartesian)
    rho_gal = galaxy[0,N_bulge:N_bulge+N_disk]
    phi_gal_cyl = galaxy[1,N_bulge:N_bulge+N_disk]
    z_gal_cyl = galaxy[2,N_bulge:N_bulge+N_disk]
    
    x_gal[N_bulge:N_bulge+N_disk] = rho_gal*np.cos(phi_gal_cyl)
    y_gal[N_bulge:N_bulge+N_disk] = rho_gal*np.sin(phi_gal_cyl)
    z_gal[N_bulge:N_bulge+N_disk] = z_gal_cyl

    # Halo (Spherical to Cartesian)
    r_gal = galaxy[0,N_bulge+N_disk:]
    theta_gal = galaxy[1,N_bulge+N_disk:]
    phi_gal_sph = galaxy[2,N_bulge+N_disk:]

    x_gal[N_bulge+N_disk:] = r_gal*np.sin(theta_gal)*np.cos(phi_gal_sph)
    y_gal[N_bulge+N_disk:] = r_gal*np.sin(theta_gal)*np.sin(phi_gal_sph)
    z_gal[N_bulge+N_disk:] = r_gal*np.cos(theta_gal)
    
    # Spot the colonizer
    inds  = np.where(cs_gal!=0)[0]

    x_col = x_gal[inds]              
    y_col = y_gal[inds]
    z_col = z_gal[inds]

    colonized_fraction = abs(np.sum(cs_gal)/len(cs_gal))

    from astroML.plotting import setup_text_plots
    setup_text_plots(fontsize=16, usetex=False)
    from astroML.stats import binned_statistic_2d

    fig = plt.figure(figsize=(20, 10))
    # Face-on
    axfo = plt.subplot(121)
    cmap = plt.cm.spectral_r
    cmap.set_bad('w', 0.)
    N, xedges, yedges = binned_statistic_2d(x_gal*1e-3, y_gal*1e-3, cont, 'sum', bins=bin_no)
    plt.imshow((N.T), origin='lower',
               extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]],
               aspect='equal', interpolation='nearest', cmap=cmap)
    plt.xlabel(r'X (kpc)')
    plt.ylabel(r'Y (kpc)')
    plt.xlim([-1e1, 1e1])
    plt.ylim([-1e1, 1e1])
    cb = plt.colorbar(pad=0.2,
                      orientation='horizontal')
    cb.set_label(r'$\mathrm{log(L/L_{total})}$')
    clim_min = min(cont)
    clim_max = max(cont) 
    plt.title("time = %s Myr"%(t))
#    plt.clim(clim_min, clim_max)

    # Edge-on
    axeo = plt.subplot(122)
    cmap = plt.cm.spectral_r
    cmap.set_bad('w', 0.)
    N, xedges, zedges=binned_statistic_2d(x_gal*1e-3, z_gal*1e-3, cont, 'sum', bins=bin_no)
    plt.imshow((N.T), origin='lower',
               extent=[xedges[0], xedges[-1], zedges[0], zedges[-1]],
               aspect='equal', interpolation='nearest', cmap=cmap)

    plt.xlabel(r'X (kpc)')
    plt.ylabel(r'Z (kpc)')
    plt.xlim([-1e1, 1e1])
    plt.ylim([-1e1, 1e1])
    cb = plt.colorbar(pad=0.2,
                      orientation='horizontal')
    cb.set_label(r'$\mathrm{log(L/L_{total})}$')
    clim_min = min(cont)
    clim_max = max(cont) 
#    print ("Colonized fraction = %.2f"%(colonized_fraction))
#    plt.clim(clim_min, clim_max)
#    plt.title("Colonized fraction = %.2f"%(abs(colonized_fraction)))
    plt.savefig("%s.svg"%(filename))
    plt.savefig("%s.png"%(filename))
#    plt.show()
    return galaxy
开发者ID:asadisaghar,项目名称:SETI,代码行数:97,代码来源:tools.py


示例12: compute_Weiner

def compute_Weiner():


    from scipy import optimize, fftpack
    from astroML.filters import savitzky_golay, wiener_filter

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
    from astroML.plotting import setup_text_plots
    setup_text_plots(fontsize=8, usetex=False)

#------------------------------------------------------------
# Create the noisy data
    np.random.seed(5)
    N = 2000
    dt = 0.05

    t = dt * np.arange(N)
    h = np.exp(-0.5 * ((t - 20.) / 1.0) ** 2)
    hN = h + np.random.normal(0, 0.5, size=h.shape)

    Df = 1. / N / dt
    f = fftpack.ifftshift(Df * (np.arange(N) - N / 2))
    HN = fftpack.fft(hN)

#------------------------------------------------------------
# Set up the Wiener filter:
#  fit a model to the PSD consisting of the sum of a
#  gaussian and white noise
    h_smooth, PSD, P_S, P_N, Phi = wiener_filter(t, hN, return_PSDs=True)

#------------------------------------------------------------
# Use the Savitzky-Golay filter to filter the values
    h_sg = savitzky_golay(hN, window_size=201, order=4, use_fft=False)

#------------------------------------------------------------
# Plot the results
    N = len(t)
    Df = 1. / N / (t[1] - t[0])
    f = fftpack.ifftshift(Df * (np.arange(N) - N / 2))
    HN = fftpack.fft(hN)

    fig = plt.figure(figsize=(5, 3.75))
    fig.subplots_adjust(wspace=0.05, hspace=0.25,
                    bottom=0.1, top=0.95,
                    left=0.12, right=0.95)

# First plot: noisy signal
    ax = fig.add_subplot(221)
    ax.plot(t, hN, '-', c='gray')
    ax.plot(t, np.zeros_like(t), ':k')
    ax.text(0.98, 0.95, "Input Signal", ha='right', va='top',
        transform=ax.transAxes, bbox=dict(fc='w', ec='none'))

    ax.set_xlim(0, 90)
    ax.set_ylim(-0.5, 1.5)

    ax.xaxis.set_major_locator(plt.MultipleLocator(20))
    ax.set_xlabel(r'$\lambda$')
    ax.set_ylabel('flux')

# Second plot: filtered signal
    ax = plt.subplot(222)
    ax.plot(t, np.zeros_like(t), ':k', lw=1)
    ax.plot(t, h_smooth, '-k', lw=1.5, label='Wiener')
    ax.plot(t, h_sg, '-', c='gray', lw=1, label='Savitzky-Golay')

    ax.text(0.98, 0.95, "Filtered Signal", ha='right', va='top',
        transform=ax.transAxes)
    ax.legend(loc='upper right', bbox_to_anchor=(0.98, 0.9), frameon=False)

    ax.set_xlim(0, 90)
    ax.set_ylim(-0.5, 1.5)

    ax.yaxis.set_major_formatter(plt.NullFormatter())
    ax.xaxis.set_major_locator(plt.MultipleLocator(20))
    ax.set_xlabel(r'$\lambda$')

# Third plot: Input PSD
    ax = fig.add_subplot(223)
    ax.scatter(f[:N / 2], PSD[:N / 2], s=9, c='k', lw=0)
    ax.plot(f[:N / 2], P_S[:N / 2], '-k')
    ax.plot(f[:N / 2], P_N[:N / 2], '-k')

    ax.text(0.98, 0.95, "Input PSD", ha='right', va='top',
        transform=ax.transAxes)

    ax.set_ylim(-100, 3500)
    ax.set_xlim(0, 0.9)

    ax.yaxis.set_major_locator(plt.MultipleLocator(1000))
    ax.xaxis.set_major_locator(plt.MultipleLocator(0.2))
    ax.set_xlabel('$f$')
    ax.set_ylabel('$PSD(f)$')

# Fourth plot: Filtered PSD
    ax = fig.add_subplot(224)
#.........这里部分代码省略.........
开发者ID:share-with-me,项目名称:flask_ex,代码行数:101,代码来源:compute.py


示例13: compute_Convolution

def compute_Convolution():

    from scipy.signal import fftconvolve

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
    from astroML.plotting import setup_text_plots
    setup_text_plots(fontsize=8, usetex=False)

#------------------------------------------------------------
# Generate random x, y with a given covariance length
    np.random.seed(1)
    x = np.linspace(0, 1, 500)
    h = 0.01
    C = np.exp(-0.5 * (x - x[:, None]) ** 2 / h ** 2)
    y = 0.8 + 0.3 * np.random.multivariate_normal(np.zeros(len(x)), C)

#------------------------------------------------------------
# Define a normalized top-hat window function
    w = np.zeros_like(x)
    w[(x > 0.12) & (x < 0.28)] = 1

#------------------------------------------------------------
# Perform the convolution
    y_norm = np.convolve(np.ones_like(y), w, mode='full')
    valid_indices = (y_norm != 0)
    y_norm = y_norm[valid_indices]

    y_w = np.convolve(y, w, mode='full')[valid_indices] / y_norm

# trick: convolve with x-coordinate to find the center of the window at
#        each point.
    x_w = np.convolve(x, w, mode='full')[valid_indices] / y_norm

#------------------------------------------------------------
# Compute the Fourier transforms of the signal and window
    y_fft = np.fft.fft(y)
    w_fft = np.fft.fft(w)

    yw_fft = y_fft * w_fft
    yw_final = np.fft.ifft(yw_fft)

#------------------------------------------------------------
# Set up the plots
    fig = plt.figure(figsize=(5, 5))
    fig.subplots_adjust(left=0.09, bottom=0.09, right=0.95, top=0.95,
                    hspace=0.05, wspace=0.05)

#----------------------------------------
# plot the data and window function
    ax = fig.add_subplot(221)
    ax.plot(x, y, '-k', label=r'data $D(x)$')
    ax.fill(x, w, color='gray', alpha=0.5,
        label=r'window $W(x)$')
    ax.fill(x, w[::-1], color='gray', alpha=0.5)

    ax.legend()
    ax.xaxis.set_major_formatter(plt.NullFormatter())

    ax.set_ylabel('$D$')

    ax.set_xlim(0.01, 0.99)
    ax.set_ylim(0, 2.0)

#----------------------------------------
# plot the convolution
    ax = fig.add_subplot(223)
    ax.plot(x_w, y_w, '-k')

    ax.text(0.5, 0.95, "Convolution:\n" + r"$[D \ast W](x)$",
        ha='center', va='top', transform=ax.transAxes,
        bbox=dict(fc='w', ec='k', pad=8), zorder=2)

    ax.text(0.5, 0.05,
        (r'$[D \ast W](x)$' +
         r'$= \mathcal{F}^{-1}\{\mathcal{F}[D] \cdot \mathcal{F}[W]\}$'),
        ha='center', va='bottom', transform=ax.transAxes)

    for x_loc in (0.2, 0.8):
        y_loc = y_w[x_w <= x_loc][-1]
        ax.annotate('', (x_loc, y_loc), (x_loc, 2.0), zorder=1,
                    arrowprops=dict(arrowstyle='->', color='gray', lw=2))

    ax.set_xlabel('$x$')
    ax.set_ylabel('$D_W$')

    ax.set_xlim(0.01, 0.99)
    ax.set_ylim(0, 1.99)

#----------------------------------------
# plot the Fourier transforms
    N = len(x)
    k = - 0.5 * N + np.arange(N) * 1. / N / (x[1] - x[0])

    ax = fig.add_subplot(422)
    ax.plot(k, abs(np.fft.fftshift(y_fft)), '-k')

#.........这里部分代码省略.........
开发者ID:share-with-me,项目名称:flask_ex,代码行数:101,代码来源:compute.py


示例14: setup_text_plots

#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
from matplotlib import pyplot as plt
import numpy as np
from sklearn.mixture import GMM
import math

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=False)

#------------------------------------------------------------
# Set up the dataset.
#  We'll use scikit-learn's Gaussian Mixture Model to sample
#  data from a mixture of Gaussians.  The usual way of using
#  this involves fitting the mixture to data: we'll see that
#  below.  Here we'll set the internal means, covariances,
#  and weights by-hand.
#np.random.seed(1)

#gmm = GMM(4, n_iter=1)
#gmm.means_ = np.array([[-4], [-1], [4], [1]])
#gmm.covars_ = np.array([[1.5], [0.5], [0.5], [1.0]]) ** 2
#gmm.weights_ = np.array([0.3, 0.3, 0.2, 0.2])
开发者ID:mikesperry,项目名称:RunningBacksGM,代码行数:30,代码来源:RBGMM_oneback_nofunc.py


示例15: compute_FFT

def compute_FFT():

    from scipy.fftpack import fft
    from scipy.stats import norm

    from astroML.fourier import PSD_continuous

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
    from astroML.plotting import setup_text_plots
    setup_text_plots(fontsize=8, usetex=False)

#------------------------------------------------------------
# Draw the data
    np.random.seed(1)

    tj = np.linspace(-25, 25, 512)
    hj = np.sin(tj)
    hj *= norm(0, 10).pdf(tj)

#------------------------------------------------------------
# plot the results
    fig = plt.figure(figsize=(5, 3.75))
    fig.subplots_adjust(hspace=0.25)
    ax1 = fig.add_subplot(211)
    ax2 = fig.add_subplot(212)

    offsets = (0, 0.15)
    colors = ('black', 'gray')
    linewidths = (1, 2)
    errors = (0.005, 0.05)

    for (offset, color, error, linewidth) in zip(offsets, colors,
                                             errors, linewidths):
    # compute the PSD
        err = np.random.normal(0, error, size=hj.shape)
        hj_N = hj + err + offset
        fk, PSD = PSD_continuous(tj, hj_N)

    # plot the data and PSD
        ax1.scatter(tj, hj_N, s=4, c=color, lw=0)
        ax1.plot(tj, 0 * tj + offset, '-', c=color, lw=1)
        ax2.plot(fk, PSD, '-', c=color, lw=linewidth)

# vertical line marking the expected peak location
    ax2.plot([0.5 / np.pi, 0.5 / np.pi], [-0.1, 1], ':k', lw=1)

    ax1.set_xlim(-25, 25)
    ax1.set_ylim(-0.1, 0.3001)

    ax1.set_xlabel('$t$')
    ax1.set_ylabel('$h(t)$')

    ax1.yaxis.set_major_locator(plt.MultipleLocator(0.1))

    ax2.set_xlim(0, 0.8)
    ax2.set_ylim(-0.101, 0.801)

    ax2.set_xlabel('$f$')
    ax2.set_ylabel('$PSD(f)$')

    plt.show()
开发者ID:share-with-me,项目名称:flask_ex,代码行数:65,代码来源:compute.py


示例16: compute_Sampling

def compute_Sampling():


    from astroML.plotting import setup_text_plots
    setup_text_plots(fontsize=8, usetex=False)

#------------------------------------------------------------
# Generate the data
    Nbins = 2 ** 15
    Nobs = 40
    f = lambda t: np.sin(np.pi * t / 3)

    t = np.linspace(-100, 200, Nbins)
    dt = t[1] - t[0]
    y = f(t)

# select observations
    np.random.seed(42)
    t_obs = 100 * np.random.random(40)

    D = abs(t_obs[:, np.newaxis] - t)
    i = np.argmin(D, 1)

    t_obs = t[i]
    y_obs = y[i]
    window = np.zeros(Nbins)
    window[i] = 1

#------------------------------------------------------------
# Compute PSDs
    Nfreq = Nbins / 2

    dt = t[1] - t[0]
    df = 1. / (Nbins * dt)
    f = df * np.arange(Nfreq)

    PSD_window = abs(np.fft.fft(window)[:Nfreq]) ** 2
    PSD_y = abs(np.fft.fft(y)[:Nfreq]) ** 2
    PSD_obs = abs(np.fft.fft(y * window)[:Nfreq]) ** 2

# normalize the true PSD so it can be shown in the plot:
# in theory it's a delta function, so normalization is
# arbitrary

# scale PSDs for plotting
    PSD_window /= 500
    PSD_y /= PSD_y.max()
    PSD_obs /= 500

#------------------------------------------------------------
# Prepare the figures
    fig = plt.figure(figsize=(5, 2.5))
    fig.subplots_adjust(bottom=0.15, hspace=0.2, wspace=0.25,
                    left=0.12, right=0.95)

# First panel: data vs time
    ax = fig.add_subplot(221)
    ax.plot(t, y, '-', c='gray')
    ax.plot(t_obs, y_obs, '.k', ms=4)
    ax.text(0.95, 0.93, "Data", ha='right', va='top', transform=ax.transAxes)
    ax.set_ylabel('$y(t)$')
    ax.set_xlim(0, 100)
    ax.set_ylim(-1.5, 1.8)

# Second panel: PSD of data
    ax = fig.add_subplot(222)
    ax.fill(f, PSD_y, fc='gray', ec='gray')
    ax.plot(f, PSD_obs, '-', c='black')
    ax.text(0.95, 0.93, "Data PSD", ha='right', va='top', transform=ax.transAxes)
    ax.set_ylabel('$P(f)$')
    ax.set_xlim(0, 1.0)
    ax.set_ylim(-0.1, 1.1)

# Third panel: window vs time
    ax = fig.add_subplot(223)
    ax.plot(t, window, '-', c='black')
    ax.text(0.95, 0.93, "Window", ha='right', va='top', transform=ax.transAxes)
    ax.set_xlabel('$t$')
    ax.set_ylabel('$y(t)$')
    ax.set_xlim(0, 100)
    ax.set_ylim(-0.2, 1.5)

# Fourth panel: PSD of window
    ax = fig.add_subplot(224)
    ax.plot(f, PSD_window, '-', c='black')
    ax.text(0.95, 0.93, "Window PSD", ha='right', va='top', transform=ax.transAxes)
    ax.set_xlabel('$f$')
    ax.set_ylabel('$P(f)$')
    ax.set_xlim(0, 1.0)
    ax.set_ylim(-0.1, 1.1)

    plt.show()
开发者ID:share-with-me,项目名称:flask_ex,代码行数:92,代码来源:compute.py


示例17: compute_Wavelet

def compute_Wavelet():

    from astroML.fourier import FT_continuous, IFT_continuous

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
    from astroML.plotting import setup_text_plots
    setup_text_plots(fontsize=8, usetex=False)


    def wavelet(t, t0, f0, Q):
        return (np.exp(-(f0 / Q * (t - t0)) ** 2)
            * np.exp(2j * np.pi * f0 * (t - t0)))


    def wavelet_FT(f, t0, f0, Q):
    # this is its fourier transform using
    # H(f) = integral[ h(t) exp(-2pi i f t) dt]
        return (np.sqrt(np.pi) * Q / f0
            * np.exp(-2j * np.pi * f * t0)
            * np.exp(-(np.pi * (f - f0) * Q / f0) ** 2))


    def check_funcs(t0=1, f0=2, Q=3):
        t = np.linspace(-5, 5, 10000)
        h = wavelet(t, t0, f0, Q)

        f, H = FT_continuous(t, h)
        assert np.allclose(H, wavelet_FT(f, t0, f0, Q))

#------------------------------------------------------------
# Create the simulated dataset
    np.random.seed(5)

    t = np.linspace(-40, 40, 2001)[:-1]
    h = np.exp(-0.5 * ((t - 20.) / 1.0) ** 2)
    hN = h + np.random.normal(0, 0.5, size=h.shape)

#------------------------------------------------------------
# Compute the convolution via the continuous Fourier transform
# This is more exact than using the discrete transform, because
# we have an analytic expression for the FT of the wavelet.
    Q = 0.3
    f0 = 2 ** np.linspace(-3, -1, 100)

    f, H = FT_continuous(t, hN)
    W = np.conj(wavelet_FT(f, 0, f0[:, None], Q))
    t, HW = IFT_continuous(f, H * W)

#------------------------------------------------------------
# Plot the results
    fig = plt.figure(figsize=(5, 5))
    fig.subplots_adjust(hspace=0.05, left=0.12, right=0.95, bottom=0.08, top=0.95)

# First panel: the signal
    ax = fig.add_subplot(311)
    ax.plot(t, hN, '-k', lw=1)

    ax.text(0.02, 0.95, ("Input Signal:\n"
                     "Localized spike plus noise"),
        ha='left', va='top', transform=ax.transAxes)

    ax.set_xlim(-40, 40)
    ax.set_ylim(-1.2, 2.2)
    ax.xaxis.set_major_formatter(plt.NullFormatter())
    ax.set_ylabel('$h(t)$')

# Second panel: the wavelet
    ax = fig.add_subplot(312)
    W = wavelet(t, 0, 0.125, Q)
    ax.plot(t, W.real, '-k', label='real part', lw=1)
    ax.plot(t, W.imag, '--k', label='imag part', lw=1)

    ax.legend(loc=1)
    ax.text(0.02, 0.95, ("Example Wavelet\n"
                     "$t_0 = 0$, $f_0=1/8$, $Q=0.3$"),
        ha='left', va='top', transform=ax.transAxes)
    ax.text(0.98, 0.05,
        (r"$w(t; t_0, f_0, Q) = e^{-[f_0 (t - t_0) / Q]^2}"
         "e^{2 \pi i f_0 (t - t_0)}$"),
        ha='right', va='bottom', transform=ax.transAxes)

    ax.set_xlim(-40, 40)
    ax.set_ylim(-1.4, 1.4)
    ax.set_ylabel('$w(t; t_0, f_0, Q)$')
    ax.xaxis.set_major_formatter(plt.NullFormatter())

# Third panel: the spectrogram
    ax = fig.add_subplot(313)
    ax.imshow(abs(HW) ** 2, origin='lower', aspect='auto', cmap=plt.cm.binary,
          extent=[t[0], t[-1], np.log2(f0)[0], np.log2(f0)[-1]])
    ax.set_xlim(-40, 40)

    ax.text(0.02, 0.95, ("Wavelet PSD"), color='w',
        ha='left', va='top', transform=ax.transAxes)

    ax.set_ylim(np.log2(f0)[0], np.log2(f0)[-1])
#.........这里部分代码省略.........
开发者ID:share-with-me,项目名称:flask_ex,代码行数:101,代码来源:compute.py


示例18: compute_AF

def compute_AF():


    from astroML.time_series import lomb_scargle, generate_damped_RW
    from astroML.time_series import ACF_scargle, ACF_EK

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
    from astroML.plotting import setup_text_plots
    setup_text_plots(fontsize=8, usetex=False)

#------------------------------------------------------------
# Generate time-series data:
#  we'll do 1000 days worth of magnitudes

    t = np.arange(0, 1E3)
    z = 2.0
    tau = 300
    tau_obs = tau / (1. + z)

    np.random.seed(6)
    y = generate_damped_RW(t, tau=tau, z=z, xmean=20)

# randomly sample 100 of these
    ind = np.arange(len(t))
    np.random.shuffle(ind)
    ind = ind[:100]
    ind.sort()
    t = t[ind]
    y = y[ind]

# add errors
    dy = 0.1
    y_obs = np.random.normal(y, dy)

#------------------------------------------------------------
# compute ACF via scargle method
    C_S, t_S = ACF_scargle(t, y_obs, dy,
                       n_omega=2 ** 12, omega_max=np.pi / 5.0)

    ind = (t_S >= 0) & (t_S <= 500)
    t_S = t_S[ind]
    C_S = C_S[ind]

#------------------------------------------------------------
# compute ACF via E-K method
    C_EK, C_EK_err, bins = ACF_EK(t, y_obs, dy, bins=np.linspace(0, 500, 51))
    t_EK = 0.5 * (bins[1:] + bins[:-1])

#------------------------------------------------------------
# Plot the results
    fig = plt.figure(figsize=(5, 5))

# plot the input data
    ax = fig.add_subplot(211)
    ax.errorbar(t, y_obs, dy, fmt='.k', lw=1)
    ax.set_xlabel('t (days)')
    ax.set_ylabel('observed flux')

# plot the ACF
    ax = fig.add_subplot(212)
    ax.plot(t_S, C_S, '-', c='gray', lw=1,
        label='Scargle')
    ax.errorbar(t_EK, C_EK, C_EK_err, fmt='.k', lw=1,
            label='Edelson-Krolik')
    ax.plot(t_S, np.exp(-abs(t_S) / tau_obs), '-k', label='True')
    ax.legend(loc=3)

    ax.plot(t_S, 0 * t_S, ':', lw=1, c='gray')

    ax.set_xlim(0, 500)
    ax.set_ylim(-1.0, 1.1)

    ax.set_xlabel('t (days)')
    ax.set_ylabel('ACF(t)')

    plt.show()
开发者ID:share-with-me,项目名称:flask_ex,代码行数:80,代码来源:compute.py


示例19: compute_Kernel

def compute_Kernel():


    from scipy import optimize, fftpack, interpolate
    from astroML.fourier import IFT_continuous
    from astroML.filters import wiener_filter

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
    from astroML.plotting import setup_text_plots
    setup_text_plots(fontsize=8, usetex=False)

#----------------------------------------------------------------------
# sample the same data as the previous Wiener filter figure
    np.random.seed(5)
    t = np.linspace(0, 100, 2001)[:-1]
    h = np.exp(-0.5 * ((t - 20.) / 1.0) ** 2)
    hN = h + np.random.normal(0, 0.5, size=h.shape)

#----------------------------------------------------------------------
# compute the PSD
    N = len(t)
    Df = 1. / N / (t[1] - t[0])
    f = fftpack.ifftshift(Df * (np.arange(N) - N / 2))

    h_wiener, PSD, P_S, P_N, Phi = wiener_filter(t, hN, return_PSDs=True)

#------------------------------------------------------------
# inverse fourier transform Phi to find the effective kernel
    t_plot, kernel = IFT_continuous(f, Phi)

#------------------------------------------------------------
# perform kernel smoothing on the data.  This is faster in frequency
# space (ie using the standard Wiener filter above) but we will do
# it in the slow & simple way here to demonstrate the equivalence
# explicitly
    kernel_func = interpolate.interp1d(t_plot, kernel.real)

    t_eval = np.linspace(0, 90, 1000)
    t_KDE = t_eval[:, np.newaxis] - t
    t_KDE[t_KDE < t_plot[0]] = t_plot[0]
    t_KDE[t_KDE > t_plot[-1]] = t_plot[-1]
    F = kernel_func(t_KDE)

    h_smooth = np.dot(F, hN) / np.sum(F, 1)

#------------------------------------------------------------
# Plot the results
    fig = plt.figure(figsize=(5, 2.2))
    fig.subplots_adjust(left=0.1, right=0.95, wspace=0.25,
                    bottom=0.15, top=0.9)

# First plot: the equivalent Kernel to the WF
    ax = fig.add_subplot(121)
    ax.plot(t_plot, kernel.real, '-k')
    ax.text(0.95, 0.95, "Effective Wiener\nFilter Kernel",
        ha='right', va='top', transform=ax.transAxes)

    ax.set_xlim(-10, 10)
    ax.set_ylim(-0.05, 0.45)
    ax.set_xlabel(r'$\lambda$')
    ax.set_ylabel(r'$K(\lambda)$')

# Second axes: Kernel smoothed results
    ax = fig.add_subplot(122)
    ax.plot(t_eval, h_smooth, '-k', lw=1)
    ax.plot(t_eval, 0 * t_eval, '-k', lw=1)
    ax.text(0.95, 0.95, "Kernel smoothing\nresult",
        ha='right', va='top', transform=ax.transAxes)

    ax.set_xlim(0, 90)
    ax.set_ylim(-0.5, 1.5)

    ax.set_xlabel('$\lambda$')
    ax.set_ylabel('flux')

    plt.show()
开发者ID:share-with-me,项目名称:flask_ex,代码行数:80,代码来源:compute.py


示例20: compute_Gaussian

def compute_Gaussian():


    from astroML.fourier import\
        FT_continuous, IFT_continuous, sinegauss, sinegauss_FT, wavelet_PSD

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
    from astroML.plotting import setup_text_plots
    setup_text_plots(fontsize=8, usetex=False)

#------------------------------------------------------------
# Sample the function: localized noise
    np.random.seed(0)

    N = 1024
    t = np.linspace(-5, 5, N)
    x = np.ones(len(t))

    h = np.random.normal(0, 1, len(t))
    h *= np.exp(-0.5 * (t / 0.5) ** 2)

#----- 

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python astro_pi.AstroPi类代码示例发布时间:2022-05-24
下一篇:
Python plotting.hist函数代码示例发布时间:2022-05-24
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap