本文整理汇总了Python中astroML.plotting.hist函数的典型用法代码示例。如果您正苦于以下问题:Python hist函数的具体用法?Python hist怎么用?Python hist使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了hist函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: generateToy
def generateToy():
print 'loading values'
if not os.path.isfile('values2.p'):
z_data = np.loadtxt('values2.dat')
pkl.dump( z_data, open( 'values2.p', "wb" ),pkl.HIGHEST_PROTOCOL )
else:
z_data = pkl.load(open('values2.p',"rb"))
print 'loaded'
#x = np.random.normal(size=1000)
z_data_subset = z_data[0:20000]
plot_range = [50,400]
print 'max',max(z_data_subset),'min',min(z_data_subset)
plt.yscale('log', nonposy='clip')
plt.axes().set_ylim(0.0000001,0.17)
hist(z_data_subset,range=plot_range,bins=100,normed=1,histtype='stepfilled',
color=['lightgrey'], label=['100 bins'])
#hist(z_data_subset,range=plot_range,bins='knuth',normed=1,histtype='step',linewidth=1.5,
# color=['navy'], label=['knuth'])
hist(z_data_subset,range=plot_range,bins='blocks',normed=1,histtype='step',linewidth=2.0,
color=['crimson'], label=['b blocks'])
plt.legend()
#plt.yscale('log', nonposy='clip')
#plt.axes().set_ylim(0.0000001,0.17)
plt.xlabel(r'$m_{\ell\ell}$ (GeV)')
plt.ylabel('A.U.')
plt.title(r'Z$\to\mu\mu$ Data')
plt.savefig('z_data_hist_comp.png')
plt.show()
开发者ID:brovercleveland,项目名称:BayesianBlocks,代码行数:30,代码来源:zExample.py
示例2: triangle
def triangle(self):
assert self.sample_invoked == True, \
'Must sample first! Use sample(iter, burn)'
fig = plt.figure(figsize=(4, 4))
ax = fig.add_subplot(111)
hist(self.trace[:].flatten(), bins='knuth', normed=True,
histtype='step', color='k', ax=ax)
plt.xlabel('$b$')
开发者ID:zpace,项目名称:python-personal-zpace,代码行数:10,代码来源:fitting_tools.py
示例3: histogram
def histogram(totalDF, column, axis, binN=10, incl_untrunc=True):
trunc = totalDF[(totalDF.untruncated == False) & (totalDF.h2 > 0) & (totalDF.M1 < 50)][column].dropna()
if not incl_untrunc:
untrunc = trunc
else:
untrunc = totalDF[(totalDF.untruncated == True) & (totalDF.h2 > 0) & (totalDF.M1 < 50)][column].dropna()
bins = get_bins(binN, untrunc, trunc)
wuntrunc, wtrunc = [1./len(untrunc)]*len(untrunc), [1./len(trunc)]*len(trunc)
hist(trunc, bins, ax=axis, alpha=0.5, label='Truncated', weights=wtrunc)
if incl_untrunc:
hist(untrunc, bins, ax=axis, alpha=0.5, label='Untruncated', weights=wuntrunc)
开发者ID:lapsed-pacifist,项目名称:GalFit,代码行数:11,代码来源:graph_play.py
示例4: bin_edges_f
def bin_edges_f(bin_method, mag_col_cl):
'''
Obtain bin edges for each photometric dimension using the cluster region
diagram.
'''
bin_edges = []
if bin_method in ['sturges', 'sqrt']:
if bin_method == 'sturges':
b_num = 1 + np.log2(len(mag_col_cl[0]))
else:
b_num = np.sqrt(len(mag_col_cl[0]))
for mag_col in mag_col_cl:
bin_edges.append(np.histogram(mag_col, bins=b_num)[1])
elif bin_method == 'bb':
# Based on Bonatto & Bica (2007) 377, 3, 1301-1323. Fixed bin width
# of 0.25 for colors and 0.5 for magnitudes.
b_num = [(max(mag_col_cl[0]) - min(mag_col_cl[0])) / 0.25,
(max(mag_col_cl[1]) - min(mag_col_cl[1])) / 0.5]
for i, mag_col in enumerate(mag_col_cl):
bin_edges.append(np.histogram(mag_col, bins=b_num[i])[1])
else:
for mag_col in mag_col_cl:
bin_edges.append(hist(mag_col, bins=bin_method)[1])
return bin_edges
开发者ID:philrosenfield,项目名称:ASteCA,代码行数:29,代码来源:local_diag_clean.py
示例5: get_index
def get_index(df):
"""
A bit of a wasteful, hackish way to get an index to use for the various
lags.
"""
_, idx, _ = hist(df.diff(1).loc[30], bins='scott', alpha=.35)
return idx
开发者ID:TomAugspurger,项目名称:dnwr-zlb,代码行数:7,代码来源:make_figures.py
示例6: histo
def histo(self):
#------------------------------------------------------------
# First figure: show normal histogram binning
fig = plt.figure(figsize=(10, 4))
fig.subplots_adjust(left=0.1, right=0.95, bottom=0.15)
ax1 = fig.add_subplot(121)
ax1.hist(self.entropy, bins=15, histtype='stepfilled', alpha=0.2, normed=True)
ax1.set_xlabel('entropy bins=15')
ax1.set_ylabel('Count(t)')
ax2 = fig.add_subplot(122)
ax2.hist(self.entropy, bins=200, histtype='stepfilled', alpha=0.2, normed=True)
ax2.set_xlabel('entropy bins=200')
ax2.set_ylabel('Count(t)')
#------------------------------------------------------------
# Second & Third figure: Knuth bins & Bayesian Blocks
fig = plt.figure(figsize=(10, 4))
fig.subplots_adjust(left=0.1, right=0.95, bottom=0.15)
for bins, title, subplot in zip(['knuth', 'blocks'],
["Knuth's rule-fixed bin-width", 'Bayesian blocks variable width'],
[121, 122]):
ax = fig.add_subplot(subplot)
# plot a standard histogram in the background, with alpha transparency
hist(self.entropy, bins=200, histtype='stepfilled',
alpha=0.2, normed=True, label='standard histogram')
# plot an adaptive-width histogram on top
hist(self.entropy, bins='blocks', ax=ax, color='black',
histtype='step', normed=True, label=title)
ax.legend(prop=dict(size=12))
ax.set_xlabel('entropy bins')
ax.set_ylabel('C(t)')
plt.show()
开发者ID:ansatz,项目名称:project,代码行数:39,代码来源:score.py
示例7: auto_discretize
def auto_discretize(self, num_data, method, range_min_max):
"""
Perform automatic discretization of a selected feature; a method
(bayesian blocks, scott method or fixed bin number) along the desired data range is passed to a special version of hist which gives cutpoints for discretization and returns the "categorized" version of the original data
"""
hist_data = hist(num_data, bins=method, range=range_min_max)
plt.close("all")
leng = len(hist_data[1])
# fix cutoff to make sure outliers are properly categorized as well if necessary
hist_data[1][leng - 1] = num_data.max()
# hist_data[1][0] = num_data.min()
# automatically assign category labels of '1','2',etc
cat_data = pandas.cut(num_data, hist_data[1], labels=range(1, leng), include_lowest="TRUE")
return pandas.Series(cat_data).astype(str)
开发者ID:startupml,项目名称:pyrite2,代码行数:15,代码来源:pyrite_eval.py
示例8: noise
def noise(fname, x0 = 100, y0 = 100, maxrad = 30):
from astroML.plotting import hist
hdulist = pf.open(fname)
im = hdulist[0].data
#print np.mean(im), np.min(im), np.max(im)
#print im[95:105, 95:105]
# x0, y0 = 100, 100
xi, yi = np.indices(im.shape)
R = np.sqrt( (yi - int(y0))**2. + (xi - int(x0))**2. )
phot_a = np.zeros(maxrad + 1)
phot_a[0] = 0
bmasked = im * ((R > maxrad) * (R < maxrad + 20.))
bdata = bmasked.flatten()
#print bdata[bdata != 0.]
#print len(bdata[bdata != 0.])
#print len(bdata)
plt.subplot(3, 1, 1)
hist(bdata[bdata != 0.], bins = 'blocks')
plt.xlabel('Flux')
plt.ylabel('(Bayesian Blocks)')
plt.title('Noise')
#plt.show()
plt.subplot(3, 1, 2)
hist(bdata[bdata != 0.], bins = 50)
plt.xlabel('Flux')
plt.ylabel('(50 bins)')
#plt.title('Noise (50 bins)')
#plt.show()
plt.subplot(3, 1, 3)
hist(bdata[bdata != 0.], bins = 'knuth')
plt.xlabel('Flux')
plt.ylabel('(Knuth\'s Rule)')
#plt.title('Noise (Knuth\'s Rule)')
plt.show()
A2, crit, sig = anderson(bdata[bdata != 0.], dist = 'norm')
print 'A-D Statistic:', A2
print ' CVs \t Sig.'
print np.vstack((crit, sig)).T
normality = normaltest(bdata[bdata != 0.])
print 'Normality:', normality
skewness = skewtest(bdata[bdata != 0.])
print 'Skewness:', skewness
kurtosis = kurtosistest(bdata[bdata != 0.])
print 'Kurtosis:', kurtosis
print 'Mean:', np.mean(bdata[bdata != 0.])
print 'Median:', np.median(bdata[bdata != 0.])
开发者ID:zpace,项目名称:a2744-analysis,代码行数:55,代码来源:noise_an.py
示例9: plot_labeled_histogram
def plot_labeled_histogram(style, data, name,
x, pdf_true, ax=None,
hide_x=False,
hide_y=False):
if ax is not None:
ax = plt.axes(ax)
counts, bins, patches = hist(data, bins=style, ax=ax,
color='k', histtype='step', normed=True)
ax.text(0.99, 0.95, '%s:\n%i bins' % (name, len(counts)),
transform=ax.transAxes,
ha='right', va='top', fontsize=12)
ax.fill(x, pdf_true, '-', color='#CCCCCC', zorder=0)
if hide_x:
ax.xaxis.set_major_formatter(plt.NullFormatter())
if hide_y:
ax.yaxis.set_major_formatter(plt.NullFormatter())
ax.set_xlim(-5, 5)
return ax
开发者ID:albertoconti,项目名称:astroML,代码行数:23,代码来源:fig_hist_binsize.py
示例10: plot_wage_change_dist
def plot_wage_change_dist(df, pi, lambda_, nperiods=4, log=True, figkwargs=None,
axkwargs=None):
"""
Make and save the figure for the distribution of wage changes.
figkwargs is a dict passed to the fig constructor.
axkwargs is a dict passed to the axes constructor.
"""
idx = get_index(df)
SOME_SS = 30 # just some period in the steady state.
diffs = range(1, nperiods + 1)
if log:
df = np.log(df)
strlog = ', (log scale),' # see title formatting
else:
strlog = ''
t = pd.concat([df.diff(x).iloc[SOME_SS] for x in diffs],
axis=1, keys=diffs)
_figkwargs = {'figsize': (13, 8)} # Leading _ is internal.
if figkwargs is not None:
_figkwargs.update(figkwargs)
_axkwargs = {}
if axkwargs is not None:
_axkwargs.update(axkwargs)
fig, ax = plt.subplots(**_figkwargs)
cts, idx, other = hist(t.values, histtype='bar', bins=idx,
label=['lag={}'.format(i) for i in diffs],
ax=ax, normed=True, **_axkwargs)
ax.set_title('Across Periods{0} $\pi={1:.3f}$, $\lambda={2:.3f}$'.format(
strlog, pi, lambda_))
ax.legend()
return fig, ax
开发者ID:TomAugspurger,项目名称:dnwr-zlb,代码行数:37,代码来源:make_figures.py
示例11: plot_redshifts
def plot_redshifts():
gz2main_fitsfile = '/Users/willettk/Astronomy/Research/GalaxyZoo/fits/gz2main_table_sample.fits'
hdulist = pyfits.open(gz2main_fitsfile)
gz2main = hdulist[1].data
hdulist.close()
redshift_all = gz2main['redshift']
redshift_finite = redshift_all[np.isfinite(redshift_all)]
fig = plt.figure()
ax = fig.add_subplot(111)
# hist(redshift_finite, bins='blocks', ax=ax, histtype='stepfilled', color='r', ec='r', normed=True)
hist(redshift_finite, bins='scotts', ax=ax, histtype='step', color='b',normed=True)
hist(redshift_finite, bins='freedman', ax=ax, histtype='step', color='y',normed=True)
hist(redshift_finite, bins='knuth', ax=ax, histtype='step', color='y',normed=True)
ax.set_xlabel('Redshift')
ax.set_ylabel('Frequency')
plt.show()
return None
开发者ID:vrooje,项目名称:galaxyzoo2,代码行数:22,代码来源:gz2_tasks.py
示例12: ntuples
import mpl_toolkits
pl.rcParams['font.size'] = 20
nh2 = r'$\log(n(H_2))$ [cm$^{-3}$]'
dens = fits.getdata('W51_H2CO11_to_22_logdensity_supersampled.fits')
cube = pyspeckit.Cube('W51_H2CO11_to_22_logdensity_supersampled.fits')
densOK = dens==dens
pl.figure(2)
pl.clf()
ax = pl.subplot(1,2,1)
densp = dens[densOK]
counts,bins,patches = ampl.hist(densp, bins=100, log=True, histtype='step', linewidth=2, alpha=0.8, color='k')
ylim = ax.get_ylim()
sp = pyspeckit.Spectrum(xarr=(bins[1:]+bins[:-1])/2.,data=counts)
sp.specfit(guesses= [660.23122694399035,
3.1516848752486522,
0.33836811902343894,
396.62714060001434,
2.5539176548294318,
0.32129608858734149,
199.13259679527025,
3.730112763513838,
0.4073913996012487])
def ntuples(lst, n):
return zip(*[lst[i::n]+lst[:i:n] for i in range(n)])
开发者ID:keflavich,项目名称:w51_singledish_h2co_maps,代码行数:31,代码来源:dens_histogram.py
示例13: KDE
t = np.linspace(-10, 30, 1000)
# Compute density with KDE
kde = KDE('gaussian', h=0.1).fit(xN[:, None])
dens_kde = kde.eval(t[:, None]) / N
# Compute density with Bayesian nearest neighbors
nbrs = KNeighborsDensity('bayesian', n_neighbors=k).fit(xN[:, None])
dens_nbrs = nbrs.eval(t[:, None]) / N
# plot the results
#ax.plot(t, true_pdf(t), ':', color='black', zorder=3,
# label="Generating Distribution")
ax.plot(xN, -0.005 * np.ones(len(xN)), '|k', lw=1.5)
hist(xN, bins='blocks', ax=ax, normed=True, zorder=1,
histtype='stepfilled', lw=1.5, color='k', alpha=0.2,
label="Bayesian Blocks")
ax.plot(t, dens_nbrs, '-', lw=2, color='gray', zorder=2,
label="Nearest Neighbors (k=%i)" % k)
ax.plot(t, dens_kde, '-', color='black', zorder=3,
label="Kernel Density (h=0.1)")
# label the plot
ax.text(0.02, 0.95, "%i points" % N, ha='left', va='top',
transform=ax.transAxes)
ax.set_ylabel('$p(x)$')
ax.legend(loc='upper right', prop=dict(size=12))
if subplot == 212:
ax.set_xlabel('$x$')
开发者ID:ansatz,项目名称:project,代码行数:30,代码来源:densityestimators.py
示例14:
from paths import dpath,fpath
pl.rcParams['font.size'] = 20
h2co11 = fits.getdata(dpath('W51_H2CO11_taucube_supersampled.fits'))
h2co22 = fits.getdata(dpath('W51_H2CO22_pyproc_taucube_lores_supersampled.fits'))
ratio = fits.getdata(dpath('W51_H2CO11_to_22_tau_ratio_supersampled_neighbors.fits'))
pl.close(1)
pl.figure(1, figsize=(10,10))
pl.clf()
ax1 = pl.subplot(3,1,1)
oneone = h2co11[h2co11==h2co11]
counts, bins, patches = ampl.hist(oneone, bins=100, log=True, histtype='step',
linewidth=2, alpha=0.8, color='k')
ylim = ax1.get_ylim()
med, mad = np.median(oneone),MAD(oneone)
pl.plot(bins,counts.max()*np.exp(-(bins-med)**2/(2*mad**2)),'r--')
ax1.set_ylim(*ylim)
ax1.set_xlabel("$\\tau_{obs}($H$_2$CO 1-1$)$", labelpad=10)
ax1.set_ylabel("$N($voxels$)$")
ax2 = pl.subplot(3,1,2)
twotwo = h2co22[h2co22==h2co22]
counts, bins, patches = ampl.hist(twotwo, bins=100, log=True, histtype='step', linewidth=2, alpha=0.8, color='k')
ylim = ax2.get_ylim()
med, mad = np.median(twotwo),MAD(twotwo)
pl.plot(bins,counts.max()*np.exp(-(bins-med)**2/(2*mad**2)),'r--')
ax2.set_ylim(*ylim)
ax2.set_xlabel("$\\tau_{obs}($H$_2$CO 2-2$)$", labelpad=10)
开发者ID:keflavich,项目名称:w51_singledish_h2co_maps,代码行数:32,代码来源:tau_histograms.py
示例15: fetch_sdss_S82standards
imX = np.empty((len(image_data), 2), dtype=np.float64)
imX[:, 0] = image_data['ra']
imX[:, 1] = image_data['dec']
# get standard stars
standards_data = fetch_sdss_S82standards()
stX = np.empty((len(standards_data), 2), dtype=np.float64)
stX[:, 0] = standards_data['RA']
stX[:, 1] = standards_data['DEC']
# crossmatch catalogs
max_radius = 1. / 3600 # 1 arcsec
dist, ind = crossmatch_angular(imX, stX, max_radius)
match = ~np.isinf(dist)
dist_match = dist[match]
dist_match *= 3600
ax = plt.axes()
hist(dist_match, bins='knuth', ax=ax,
histtype='stepfilled', ec='k', fc='#AAAAAA')
ax.set_xlabel('radius of match (arcsec)')
ax.set_ylabel('N(r, r+dr)')
ax.text(0.95, 0.95,
"Total objects: %i\nNumber with match: %i" % (imX.shape[0],
np.sum(match)),
ha='right', va='top', transform=ax.transAxes)
ax.set_xlim(0, 0.2)
plt.show()
开发者ID:BTY2684,项目名称:astroML,代码行数:30,代码来源:plot_crossmatch.py
示例16: bayes_block
def bayes_block(x_data, filename, format, x_label = '', title = '',\
log_x = False, log_y = False):
'''
Description
This function takes the given data and produces a Bayesian Block
histogram of it. The given axis label and title are applied, and then
the histogram is saved using the given filename and format.
Required Input
x_data: The data array to be graphed. Numpy array or list of floats.
This array is flattened to one dimension before creating
the histogram.
filename: The filename (including extension) to use when saving the
image. Provide as a string.
format: The format (e.g. png, jpeg) in which to save the image. This
is a string.
x_label: String specifying the x-axis label.
title: String specifying the title of the graph.
log_x: If this is True, then logarithmic binning is used for the
histogram, and the x-axis of the saved image is logarithmic.
If this is False (default) then linear binning is used.
log_y: If this is True, then a logarithmic scale is used for the
y-axis of the histogram. If this is False (default), then
a linear scale is used.
Output
A histogram is automatically saved using the given data and labels,
in the specified format. 1 is returned if the code performs to
completion.
'''
# First make a figure object with matplotlib (default size)
fig = plt.figure()
# Create an axis object to go with this figure
ax = fig.add_subplot(111)
# Check to see if the x-axis of the histogram needs to be logarithmic
if log_x == True:
# Set the x-axis scale of the histogram to be logarithmic
ax.set_xscale('log')
# Make a histogram of the given data, with the specified number of
# bins. Note that the data array is flattened to one dimension.
# Do we need to normalise to account for the bin sizes being different?
aML.hist(x_data.flatten(), bins = 'blocks', normed = True, log = log_y)
# Add the specified x-axis label to the plot
plt.xlabel(x_label)
# Add a y-axis label to the plot
plt.ylabel('Counts')
# Add the specified title to the plot
plt.title(title)
# Save the figure using the title given by the user
plt.savefig(filename, format = format)
# Print a message to the screen saying that the image was created
print filename + ' created successfully.\n'
# Close the figure so that it does not take up memory
plt.close()
# Now that the graph has been produced, return 1
return 1
开发者ID:ChrisTCH,项目名称:phd_code,代码行数:64,代码来源:bayes_block.py
示例17: zip
ax1.set_ylabel('P(entropy)')
ax2 = fig.add_subplot(122)
ax2.hist(ent, bins=1000, histtype='stepfilled', alpha=0.2, normed=True)
ax2.set_xlabel('entropy')
ax2.set_ylabel('P(entropy)')
#------------------------------------------------------------
# Second & Third figure: Knuth bins & Bayesian Blocks
fig = plt.figure(figsize=(10, 4))
fig.subplots_adjust(left=0.1, right=0.95, bottom=0.15)
for bins, title, subplot in zip(['knuth', 'blocks'],
["Knuth's rule", 'Bayesian blocks'],
[121, 122]):
ax = fig.add_subplot(subplot)
# plot a standard histogram in the background, with alpha transparency
hist(ent, bins=200, histtype='stepfilled',
alpha=0.2, normed=True, label='standard histogram')
# plot an adaptive-width histogram on top
hist(ent, bins=bins, ax=ax, color='black',
histtype='step', normed=True, label=title)
ax.legend(prop=dict(size=12))
ax.set_xlabel('WTS')
ax.set_ylabel('P(WTS)')
plt.show()
开发者ID:ansatz,项目名称:project,代码行数:30,代码来源:s3.py
示例18: hist
# print j
# peakabsmagvalue = [peakabsmagvalueb,peakabsmagvaluec]
# print peakabsmagvalueb
# hist(peakabsmagvalueb, bins = 'knuth', label = str(ib) + ' Ib datapoints', color = 'blue', histtype='stepfilled', alpha=0.2)#, stacked=True)
# hist(peakabsmagvaluec, bins = 'knuth', label = str(ic) + ' Ic datapoints', color ='green', histtype='stepfilled', alpha=0.2, des)#, stacked=True)
# plotting best fit gaussian
plt.subplot(221)
result = hist(
peakabsmagvalueb, bins="knuth", label=str(ib) + " Ib datapoints", color="blue", histtype="stepfilled", alpha=0.2
) # , stacked=True)
mean = np.mean(peakabsmagvalueb)
variance = np.var(peakabsmagvalueb)
sigma = np.sqrt(variance)
x = np.linspace(-23, -13, 100)
dx = result[1][1] - result[1][0]
scale = len(peakabsmagvalueb) * dx
plt.plot(
x,
mlab.normpdf(x, mean, sigma) * scale,
label="Best fit, mean: " + str(round(mean, 3)) + " sigma: " + str(round(sigma, 3)),
)
开发者ID:FlorenceConcepcion,项目名称:snecc2015,代码行数:30,代码来源:best_model_fit.py
示例19: plot_hist
def plot_hist(x, filename):
fig = plt.figure(figsize=(10, 10))
hist(x, bins='scott')
plt.savefig(filename)
plt.close()
开发者ID:astrolitterbox,项目名称:SAMI,代码行数:5,代码来源:utils.py
示例20: hist
'GRPCZ', 'FC', 'LOGMH', 'DEN1MPC'.
"""
data = np.genfromtxt("ECO_dr1_subset.csv", delimiter=",", dtype=None, names=True)
name = data['NAME']
logmstar = data ['LOGMSTAR']
urcolor = data['MODELU_RCORR']
cz = data['CZ']
goodur = (urcolor > -99) & (logmstar > 10.)
colors=urcolor[goodur]
# First plot histograms of u-r color with different bin width "rules"
plt.figure(1)
plt.clf()
hist(colors,bins='freedman',label='freedman',normed=1,histtype='stepfilled',color='green',alpha=0.5)
hist(colors,bins='scott',label='scott',normed=1,histtype='step',color='purple',alpha=0.5,hatch='///')
# note the different format used below so as to save the bin info for Knuth's rule
n0, bins0, patches0 = hist(colors,bins='knuth',label='knuth',normed=1,histtype='stepfilled',color='blue',alpha=0.25)
plt.xlim(0,3)
plt.xlabel("u-r color (mag)")
plt.title("Galaxy Color Distribution")
plt.legend(loc="best")
# As in Fig. 5.20 (p. 227), Scott's rule makes broader bins.
# Now give Kernel Density Estimation a try. KDE is shown in Ivezic+ Fig. 6.1
# but we'll use this newer version: sklearn.neighbors.KernelDensity -- see
# http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html
bw = 0.5*(bins0[2]-bins0[1])
# initially using 0.5*Knuth binsize from above as bandwidth; should test other values
开发者ID:derrcarr,项目名称:2017bootcamp-general,代码行数:31,代码来源:distributions.py
注:本文中的astroML.plotting.hist函数示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论