• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

zhiqiangdon/CU-Net: Code for "Quantized Densely Connected U-Nets for Effici ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

zhiqiangdon/CU-Net

开源软件地址(OpenSource Url):

https://github.com/zhiqiangdon/CU-Net

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

Quantized Densely Connected U-Nets for Efficient Landmark Localization

CU-Net: Coupled U-Nets

Overview

The follwoing figure gives an illustration of naive dense U-Net, stacked U-Nets and coupled U-Nets (CU-Net). The naive dense U-Net and stacked U-Nets have shortcut connections only inside each U-Net. In contrast, the coupled U-Nets also have connections for semantic blocks across U-Nets. The CU-Net is a hybrid of naive dense U-Net and stacked U-Net, integrating the merits of both dense connectivity, intermediate supervisions and multi-stage top-down and bottom-up refinement. The resulted CU-Net could save ~70% parameters of the previous stacked U-Nets but with comparable accuracy.

If we couple each U-Net pair in multiple U-Nets, the coupling connections would have quadratic growth with respect to the U-Net number. To make the model more parameter efficient, we propose the order-K coupling to trim off the long-distance coupling connections.

For simplicity, each dot represents one U-Net. The red and blue lines are the shortcut connections of inside semantic blocks and outside inputs. Order-0 connectivity (Top) strings U-Nets together only by their inputs and outputs, i.e. stacked U-Nets. Order-1 connectivity (Middle) has shortcut connections for adjacent U-Nets. Similarly, order-2 connectivity (Bottom) has shortcut connections for 3 nearby U-Nets.

Prerequisites

This package has the following requirements:

  • Python 2.7
  • Pytorch v0.4.0 or Pytorch v0.1.12

Note that the script name with string prev-version requires Pytorch v0.1.12.

Training

python cu-net.py --gpu_id 0 --exp_id cu-net-2 --layer_num 2 --order 1 --loss_num 2 --is_train true --bs 24

Validation

python cu-net.py --gpu_id 0 --exp_id cu-net-2 --layer_num 2 --order 1 --loss_num 2 --resume_prefix your_pretrained_model.pth.tar --is_train false --bs 24

Model Options

layer_num     # number of coupled U-Nets
order         # the order of coupling
loss_num      # number of losses. Losses are uniformly distributed along the CU-Net. Each U-Net at most has one loss. (loss_num <= layer_num)

Pretrained Models

  1. face-layer-num-8-order-1
  2. human-layer-num-16-order-1

Citation

If you find this code useful in your research, please consider citing:

@inproceedings{tang2018quantized,
  title={Quantized densely connected U-Nets for efficient landmark localization},
  author={Tang, Zhiqiang and Peng, Xi and Geng, Shijie and Wu, Lingfei and Zhang, Shaoting and Metaxas, Dimitris},
  booktitle={ECCV},
  year={2018}
}
@inproceedings{tang2018cu,
  title={CU-Net: Coupled U-Nets},
  author={Tang, Zhiqiang and Peng, Xi and Geng, Shijie and Zhu, Yizhe and Metaxas, Dimitris},
  booktitle={BMVC},
  year={2018}
}



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap