开源软件名称(OpenSource Name):PINTO0309/TPU-MobilenetSSD开源软件地址(OpenSource Url):https://github.com/PINTO0309/TPU-MobilenetSSD开源编程语言(OpenSource Language):Python 84.7%开源软件介绍(OpenSource Introduction):TPU-MobilenetSSDEnvironment
My articles2.Structure visualization of Tensorflow Lite model files (.tflite) LattePanda Alpha Core m3 + USB 3.0 + Google Edge TPU Accelerator + MobileNet-SSD v2 + Async mode320x240 LattePanda Alpha Core m3 + USB 3.0 + Google Edge TPU Accelerator + MobileNet-SSD v2 + Async mode640x480 Core i7 + USB 3.0 + Google Edge TPU Accelerator / Multi-TPUs x3 + MobileNet-SSD v2 + Async mode320x240 Environment construction procedure$ curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add-
$ echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list
$ sudo apt-get update
$ sudo apt-get upgrade edgetpu
$ wget https://dl.google.com/coral/edgetpu_api/edgetpu_api_latest.tar.gz -O edgetpu_api.tar.gz --trust-server-names
$ tar xzf edgetpu_api.tar.gz
$ cd edgetpu_api
$ bash ./install.sh UsageMobileNet-SSD-TPU-async.py -> USB camera animation and inference are asynchronous (The frame is slightly off.) If you use USB3.0 USBHub and connect multiple TPUs, it automatically detects multiple TPUs and processes inferences in parallel at high speed. $ git clone https://github.com/PINTO0309/TPU-MobilenetSSD.git
$ cd TPU-MobilenetSSD
$ python3 MobileNet-SSD-TPU-async.py usage: MobileNet-SSD-TPU-async.py [-h] [--model MODEL] [--label LABEL]
[--usbcamno USBCAMNO]
optional arguments:
-h, --help show this help message and exit
--model MODEL Path of the detection model.
--label LABEL Path of the labels file.
--usbcamno USBCAMNO USB Camera number. Reference
|
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论