If you find this work useful in your research, please consider citing:
@incollection{NIPS2018_7466,
title = {Pelee: A Real-Time Object Detection System on Mobile Devices},
author = {Wang, Robert J and Li, Xiang and Ling, Charles X},
booktitle = {Advances in Neural Information Processing Systems 31},
editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett},
pages = {1967--1976},
year = {2018},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/7466-pelee-a-real-time-object-detection-system-on-mobile-devices.pdf}
}
Results on VOC 2007
The table below shows the results on PASCAL VOC 2007 test.
The table below shows the results on COCO test-dev2015.
Method
mAP@[0.5:0.95]
mAP@0.5
mAP@0.75
FPS (NVIDIA TX2)
# parameters
SSD300
25.1
43.1
25.8
-
34.30 M
YOLOv2-416
21.6
44.0
19.2
32.2
67.43 M
YOLOv3-320
-
51.5
-
21.5
67.43 M
TinyYOLOv3-416
-
33.1
-
105
12.3 M
SSD+MobileNet-300
18.8
-
-
80
6.80 M
SSDLite+MobileNet V2-320
22
-
-
61
6.80 M
Pelee-304
22.4
38.3
22.9
120
5.98 M
Preparation
Install SSD (https://github.com/weiliu89/caffe/tree/ssd) following the instructions there, including: (1) Install SSD caffe; (2) Download PASCAL VOC 2007 and 2012 datasets; and (3) Create LMDB file. Make sure you can run it without any errors.
Download the pretrained PeleeNet model. By default, we assume the model is stored in $CAFFE_ROOT/models/
Clone this repository and create a soft link to $CAFFE_ROOT/examples
请发表评论